Abstract
By analyzing stochastic processes on a Riemannian manifold, in particular Brownian motion, one can deduce the metric structure of the space. This fact is implicitly used in diffusion tensor imaging of the brain when cast into a Riemannian framework. When modeling the brain white matter as a Riemannian manifold one finds (under some provisions) that the metric tensor is proportional to the inverse of the diffusion tensor, and this opens up a range of geometric analysis techniques. Unfortunately a number of these methods have limited applicability, as the Riemannian framework is not rich enough to capture key aspects of the tissue structure, such as fiber crossings.An extension of the Riemannian framework to the more general Finsler manifolds has been proposed in the literature as a possible alternative. The main contribution of this work is the conclusion that simply considering Brownian motion on the Finsler base manifold does not reproduce the signal model proposed in the Finslerian framework, nor lead to a model that allows the extraction of the Finslerian metric structure from the signal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We only consider reversible Finsler functions, meaning that for all \((\mathbf{x},\mathbf{y}) \in \mathit{TM}\), we have \(F(\mathbf{x},-\mathbf{y}) = F(\mathbf{x},\mathbf{y})\).
- 2.
Different gradient sequences can be used to find the coefficients {D ij}, based on modified (but similar) versions of Eq. (8).
- 3.
In conformity with diffusion MRI literature we omit the diacritical mark above the covectors \(\mathbf{q}\) and \(\mathbf{G}\).
- 4.
- 5.
Since we only report results of a single experiment we provide only the b-value. A more extensive analysis should consider the influence of the different parameters δ, Δ, and \(\|\mathbf{G}\|\) separately.
References
Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010). doi:10.1002/mrm.22365
Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888 (2003). doi:10.1016/S1053-8119(03)00336-7
Antonelli, P.L., Zastawniak, T.J.: Fundamentals of Finslerian Diffusion with Applications. Springer, Dordrecht (1999)
Assaf, Y., Basser, P.J.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27(1), 48–58 (2005). doi:10.1016/j.neuroimage.2005.03.042
Assaf, Y., Cohen, Y.: Non-mono-exponential attenuation of water and n-acetyl aspartate signals due to diffusion in brain tissue. J. Magn. Reson. 131(1), 69–85 (1998)
Astola, L.J., Florack, L.M.J.: Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging. Int. J. Comput. Vis. 92(3), 325–336 (2011)
Bao, D., Lackey, B.C.: A Hodge decomposition theorem for Finsler spaces. Comptes Rendus de l’Académie des Sciences. Série 1, Mathématique 323(1), 51–56 (1996)
Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, New York (2000)
Barthelmé, T.: A natural Finsler-laplace operator. Isr. J. Math. 196(1), 375–412 (2013)
Basser, P.J., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Ser. B 103(3), 247–254 (1994). doi:10.1006/jmrb.1994.1037
Centore, P.: A mean-value Laplacian for Finsler spaces. In: Antonelli, P.L., Lackey, B.C. (eds.) The Theory of Finslerian Laplacians and Applications. Mathematics and Its Applications, vol. 459, pp. 151–186. Springer, Netherlands (1998)
de Lara, M.C.: Geometric and symmetry properties of a nondegenerate diffusion process. Ann. Probab. 23(4), 1557–1604 (1995). doi:10.1214/aop/1176987794
Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322(8), 549–560 (1905). doi:10.1002/andp.19053220806
Fletcher, P.T., Tao, R., Jeong, W.K., Whitaker, R.T.: A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI. In: Information Processing in Medical Imaging, pp. 346–358. Springer, Berlin (2007)
Florack, L.M.J., Fuster, A.: Riemann-finsler geometry for diffusion weighted magnetic resonance imaging. In: Westin, C.F., Vilanova, A., Burgeth B. (eds.) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, pp. 189–208. vol. XV. Springer (2014, to appear)
Fuster, A., Astola, L., Florack, L.: A Riemannian scalar measure for diffusion tensor images. In: Computer Analysis of Images and Patterns, pp. 419–426. Springer, Berlin (2009)
Fuster, A., Tristan-Vega, A., Dela Haije, T.C.J., Westin, C.F., Florack, L.M.J.: A novel Riemannian metric for geodesic tractography in DTI. In: CDMRI, Nagoya, pp. 47–54 (2013)
Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013). doi:10.1016/j.neuroimage.2013.04.127
Haacke, E.M.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999)
Hao, X., Whitaker, R., Fletcher, P.: Adaptive Riemannian metrics for improved geodesic tracking of white matter. In: Information Processing in Medical Imaging, pp. 13–24. Springer, Heidelberg (2011)
Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005). doi:10.1002/mrm.20508
Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging: prevalence of multifiber voxels in WM. Hum. Brain Mapp. 34(11), 2747–2766 (2013). doi:10.1002/hbm.22099
Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2005)
Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: application to connectivity mapping. In: Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos D., Tygar, D., Vardi, M.Y., Weikum, G., Pajdla, T., Matas, J. (eds.) Computer Vision -ECCV 2004, vol. 3024, pp. 127–140. Springer, Berlin/Heidelberg (2004)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O., Lehericy, S., Ugurbil, K.: A Riemannian approach to diffusion tensor images segmentation. In: Information Processing in Medical Imaging, pp. 591–602. Springer, Heidelberg (2005)
Lewis, J.C.: Elementary statistical models for vector collision-sequence interference effects with Poisson-distributed collision times. Int. J. Spectrosc. 2010, 1–5 (2010). doi:10.1155/2010/561697
Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51(5), 924–937 (2004). doi:10.1002/mrm.20071
Liu, C., Bammer, R., Moseley, M.E.: Limitations of apparent diffusion coefficient-based models in characterizing non-gaussian diffusion. Magn. Reson. Med. 54(2), 419–428 (2005). doi:10.1002/mrm.20579
Melonakos, J., Mohan, V., Niethammer, M., Smith, K., Kubicki, M., Tannenbaum, A.: Finsler tractography for white matter connectivity analysis of the cingulum bundle. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007, pp. 36–43. Springer, Heidelberg (2007)
Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008). doi:10.1109/TPAMI.2007.70713
Novikov, D.S., Kiselev, V.G.: Effective medium theory of a diffusion-weighted signal. NMR Biomed. 23(7), 682–697 (2010). doi:10.1002/nbm.1584
O’Donnell, L., Haker, S., Westin, C.F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2002, vol. 2488, pp. 459–466. Springer, Berlin/Heidelberg (2002)
Øksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin/New York (2003)
Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)
Özarslan, E., Vemuri, B.C., Mareci, T.H.: Fiber orientation mapping using generalized diffusion tensor imaging. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 1036–1039 (2004)
Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31(3), 1086–1103 (2006). doi:10.1016/j.neuroimage.2006.01.024
Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013). doi:10.1016/j.neuroimage.2013.04.016
Pinsky, M.A.: Isotropic transport process on a Riemannian manifold. Trans. Am. Math. Soc. 218, 353–360 (1976)
Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E.: Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage 80, 125–143 (2013). doi:10.1016/j.neuroimage.2013.05.057
Sotiropoulos, S.N., Moeller, S., Jbabdi, S., Xu, J., Andersson, J.L., Auerbach, E.J., Yacoub, E., Feinberg, D., Setsompop, K., Wald, L.L., Behrens, T.E.J., Ugurbil, K., Lenglet, C.: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using sense: effects of dMRI image reconstruction on fiber orientations. Magn. Reson. Med. 70(6), 1682–1689 (2013). doi:10.1002/mrm.24623
Torrey, H.C.: Bloch equations with diffusion terms. Phys. Rev. 104(3), 563 (1956)
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013). doi:10.1016/j.neuroimage.2013.05.041
Watanabe, T.: Weak convergence of the isotropic scattering transport process with one speed in the plane to Brownian motion. Proc. Jpn. Acad. 44(7), 677–680 (1968). doi:10.3792/pja/1195521091. MR: MR0236996 Zbl: 0177.45403
Watanabe, S., Watanabe, T.: Convergence of isotropic scattering transport process to Brownian motion. Nagoya Math. J. 40, 161–171 (1970)
Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., Dai, G., Pandya, D.N., Hagmann, P., D’Arceuil, H., de Crespigny, A.J.: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41(4), 1267–1277 (2008). doi:10.1016/j.neuroimage.2008.03.036
Acknowledgements
Tom Dela Haije gratefully acknowledges The Netherlands Organisation for Scientific Research (NWO) for financial support. The authors would like to thank Thomas Schultz and Remco Duits for their input regarding the quadratic scaling assumption. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dela Haije, T.C.J., Fuster, A., Florack, L.M.J. (2015). Finslerian Diffusion and the Bloch–Torrey Equation. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-15090-1_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15089-5
Online ISBN: 978-3-319-15090-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)