Abstract
In this chapter, we illustrate how to process multispectral and hyperspectral images via mathematical morphology. First, according to the number of channels the data are embeded into a sufficiently high dimensional space. This transformation utilizes a special geometric structure, namely double hypersimplices, for further processing the data. For example, RGB-color images are transformed into points within a specific double hypersimplex. It is explained in detail how to calculate the supremum and infimum of samples of those transformed data to allow for the meaningful definition of morphological operations such as dilation and erosion and in a second step top hats, gradients, and morphological Laplacian. Finally, numerical results are presented to explore the advantages and shortcomings of the new proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angula, J., Lefèvre, S., Lezoray, O.: Color representation and processing in polar color spaces. In: Fernandez-Maloigne, C., Robert-Inacio, F., Macaire, L. (eds.) Digital Color Imaging, pp. 1–40. Wiley-ISTE, Hoboken, New Jersey (2013)
Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007)
Banon, G.J.F., Barrera, J., Braga-Neto, U.d.M., Hirata, N.S.T. (eds.): Proceedings of the 8th International Symposium on Mathematical Morphology: Volume 1 - Full Papers. Computational Imaging and Vision, vol. 1. Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos (2007)
Braun, K.M., Balasubramanian, R., Eschbach, R.: Development and evaluation of six gamut-mapping algorithms for pictorial images. In: Color Imaging Conference, pp. 144–148. IS&T - The Society for Imaging Science and Technology, Springfield (1999)
Burgeth, B., Kleefeld, A.: Morphology for color images via Loewner order for matrix fields. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing (Proceedings of the 11th International Symposium on Mathematical Morphology, Uppsala, 27–29 May). Lecture Notes in Computer Science, vol. 7883, pp. 243–254. Springer, Berlin (2013)
Burgeth, B., Kleefeld, A.: An approach to color-morphology based on einstein addition and loewner order. Pattern Recognit. Lett. 47, 29–39 (2014)
Burgeth, B., Papenberg, N., Bruhn, A., Welk, M., Feddern, C., Weickert, J.: Mathematical morphology based on the loewner ordering for tensor data. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On, Computational Imaging and Vision, vol. 30, pp. 407–418. Springer, Dordrecht (2005)
Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Mathematical morphology on tensor data using the loewner ordering. In: Weickert, H.H.J. (ed.) Visualization and Processing of Tensor Fields. Springer, Berlin (2006)
Comer, M.L., Delp, E.J.: Morphological operations for color image processing. J. Electron. Imaging 8(3), 279–289 (1999)
Heijmans, H.J.A.M.: Morphological Image Operators. Academic, Boston (1994)
Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.): Mathematical morphology and its applications to image and signal processing. In: Proceedings of the 11th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 7883. Springer, Berlin (2013)
Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)
Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)
Ostwald, W.: Die Farbenfibel. Unesma, Leipzig (1916)
Ronse, C., Serra, J.: Algebraic foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, Chap. 2, pp. 35–80. ISTE/Wiley, London (2010)
Ronse, C., Najman, L., Decencière, E. (eds.): Mathematical Morphology: 40 Years On, Computational Imaging and Vision, vol. 30. Springer, Dordrecht (2005)
Serra, J.: Echantillonnage et estimation des phénomènes de transition minier. Ph.D. thesis, University of Nancy, France (1967)
Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic, London (1982)
Serra, J.: The false colour problem. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing. Proceedings of the 9th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 5720, Chap. 2, pp. 13–23. Springer, Heidelberg (2009)
Serra, J., Soille, P. (eds.): Mathematical Morphology and Its Applications to Image Processing. Computational Imaging and Vision, vol. 2. Kluwer, Dordrecht (1994)
Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Berlin (2003)
Soille, P., Pesaresi, M., Ouzounis, G. (eds.): Mathematical Morphology and Its Applications to Image and Signal Processing. Proceedings of the 10th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671. Springer, Berlin (2011)
Ungar, A.A.: Einstein’s special relativity: the hyperbolic geometric viewpoint. In: Conference on Mathematics, Physics and Philosophy on the Interpretations of Relativity, II. Budapest (2009)
van de Gronde, J.J., Roerdink, J.B.T.M.: Group-invariant frames for colour morphology. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing (Proceedings of the 11th International Symposium on Mathematical Morphology, Uppsala, 27–29 May). Lecture Notes in Computer Science, vol. 7883, pp. 267–278. Springer, Berlin (2013)
Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.): Mathematical Morphology and Its Application to Signal and Image Processing. Proceedings of the 9th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 5720. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kleefeld, A., Burgeth, B. (2015). Processing Multispectral Images via Mathematical Morphology. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-15090-1_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15089-5
Online ISBN: 978-3-319-15090-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)