Skip to main content

Distilling the Internet’s Application Mix from Packet-Sampled Traffic

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8995))

Included in the following conference series:

  • 2337 Accesses

Abstract

As the Internet continues to grow both in size and in terms of the volume of traffic it carries, more and more networks in the different parts of the world are relying on an increasing number of distinct ways to exchange traffic with one another. As a result, simple questions such as “What is the application mix in today’s Internet?” may produce non-informative simple answers unless they are refined by specifying the vantage point where the traffic is observed, the networks that are involved, or even the type of interconnection used.

In this paper, we revisit the question of the application mix in today’s Internet and make two main contributions. First, we develop a methodology for classifying the application mix in packet-sampled traces collected at one of the largest IXPs in Europe and worldwide. We show that our method can classify close to 95 % of the traffic by relying on a stateful classification approach that uses payload signatures, communication patterns, and port-based classification only as a fallback. Second, our results show that when viewed from this vantage point and aggregated over all the IXP’s public peering links, the Internet’s application mix is very similar to that reported in other recent studies that relied on different vantage points, peering links or classification methods. However, the observed aggregate application mix is by no means representative of the application mix seen on individual peering links. In fact, we show that the business type of the ASes that are responsible for much of the IXP’s total traffic has a strong influence on the application mix of their overall traffic and of the traffic seen on their major peering links.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Traffic traversing the IXP’s private peering links is not collected and not considered here.

  2. 2.

    Note that the applications belonging to the “other known” traffic class vary across studies.

References

  1. BitTorrent Protocol Specification v 1.0. https://wiki.theory.org/BitTorrentSpecification

  2. Digital Trends article, 12 October 2013. http://www.digitaltrends.com/opinion/bittorrents-image-problem/

  3. L7-filter. http://l7-filter.sourceforge.net/

  4. Sandvine Global Internet Phenomena, 1H 2014. https://www.sandvine.com/downloads/general/global-internet-phenomena/

  5. Sandvine Traffic Classification. https://www.sandvine.com/technology/traffic-classification.html

  6. uTorrent Transport Protocol Specification. http://www.bittorrent.org/beps/bep_0029.html

  7. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy of a large European IXP. In: ACM SIGCOMM (2012)

    Google Scholar 

  8. Alcock, S., Nelson, R.: Libprotoident: Traffic classification using lightweight packet inspection. University of Waikato, Technical report (2012)

    Google Scholar 

  9. Bonfiglio, D., Mellia, M., Meo, M., Ritacca, N., Rossi, D.: Tracking down skype traffic. In: IEEE INFOCOM (2008)

    Google Scholar 

  10. Callado, A., Kamienski, C., Szabo, G., Gero, B., Kelner, J., Fernandes, S., Sadok, D.: A survey on internet traffic identification. IEEE Commun. Surv. Tutor. 11(3), 37–52 (2009)

    Article  Google Scholar 

  11. Carela-Español, V., Bujlow, T., Barlet-Ros, P.: Is our ground-truth for traffic classification reliable? In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 98–108. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Measuring IPv6 adoption. In: ACM SIGCOMM (2014)

    Google Scholar 

  13. Dainotti, A., Pescape, A., Claffy, K.: Issues and future directions in traffic classification. IEEE Netw. Mag. 26(1), 35–40 (2012)

    Article  Google Scholar 

  14. Finamore, A., Mellia, M., Meo, M., Munafo, M., Rossi, D.: Experiences of Internet traffic monitoring with Tstat. IEEE Netw. 25(3), 8–14 (2011)

    Article  Google Scholar 

  15. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: Stochastic packet inspection classifier for UDP traffic. IEEE/ACM Trans. Netw. 18(5), 1505–1515 (2010)

    Article  Google Scholar 

  16. Gerber, A., Doverspike, R.: Traffic types and growth in backbone networks. In: OFC/NFOEC (2011)

    Google Scholar 

  17. Iliofotou, M., Gallagher, B., Eliassi-Rad, T., Xie, G., Faloutsos, M.: Profiling-by-association: A resilient traffic profiling solution for the internet backbone. In: ACM CoNEXT (2010)

    Google Scholar 

  18. Karagiannis, T., Broido, A., Faloutsos, M., claffy, Kc.: Transport layer identification of P2P traffic. In: ACM IMC (2004)

    Google Scholar 

  19. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification in the dark. In: ACM SIGCOMM (2005)

    Google Scholar 

  20. Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.-Y.: Internet traffic classification demystified: Myths, caveats, and the best practices. In: ACM CoNEXT (2008)

    Google Scholar 

  21. Labovitz, C., Lekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Internet inter-domain traffic. In: ACM SIGCOMM (2010)

    Google Scholar 

  22. Lee, C., Lee, D.K., Moon, S.: Unmasking the growing UDP traffic in a campus network. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 1–10. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of residential broadband internet traffic. In: ACM IMC (2009)

    Google Scholar 

  24. Moore, A.W., Papagiannaki, K.: Toward the accurate identification of network applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)

    Article  Google Scholar 

  26. Popa, L., Ghodsi, A., Stoica, I.: HTTP as the narrow waist of the future Internet. In: ACM HotNets (2010)

    Google Scholar 

  27. Richter, P., Smaragdakis, G., Feldmann, A., Chatzis, N., Boettger, J., Willinger, W.: Peering at peerings: On the role of IXP route servers. In: ACM IMC (2014)

    Google Scholar 

  28. InMon–sFlow. http://sflow.org/

  29. Valenti, D., Rossi, D., Dainotti, A., Pescapè, A., Finamore, A., Mellia, M.: Reviewing traffic classification. In: TMA (2013)

    Google Scholar 

  30. Wang, L., Kangasharju, J.: Real-world sybil attacks in BitTorrent mainline DHT. In: IEEE GLOBECOM (2012)

    Google Scholar 

Download references

Acknowledgements

We want to express our gratitude towards the IXP operators for their generous support and feedback. We thank the anonymous reviewers for their helpful feedback. Georgios Smaragdakis was supported by the EU Marie Curie IOF “CDN-H” (PEOPLE-628441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Richter, P., Chatzis, N., Smaragdakis, G., Feldmann, A., Willinger, W. (2015). Distilling the Internet’s Application Mix from Packet-Sampled Traffic. In: Mirkovic, J., Liu, Y. (eds) Passive and Active Measurement. PAM 2015. Lecture Notes in Computer Science(), vol 8995. Springer, Cham. https://doi.org/10.1007/978-3-319-15509-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15509-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15508-1

  • Online ISBN: 978-3-319-15509-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics