
ar
X

iv
:1

41
0.

24
63

v2
 [

cs
.L

O
]

16
 O

ct
 2

01
4

Simplified Coalgebraic Trace Equivalence

Alexander Kurz1, Stefan Milius3, Dirk Pattinson2, and Lutz Schröder3

1 University of Leicester
2 The Australian National University

3 Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract. The analysis of concurrent and reactive systems is based to alarge de-
gree on various notions of process equivalence, ranging, onthe so-called linear-
time/branching-time spectrum, from fine-grained equivalences such as strong
bisimilarity to coarse-grained ones such as trace equivalence. The theory of con-
current systems at large has benefited from developments in coalgebra, which
has enabled uniform definitions and results that provide a common umbrella for
seemingly disparate system types including non-deterministic, weighted, proba-
bilistic, and game-based systems. In particular, there hasbeen some success in
identifying a generic coalgebraic theory of bisimulation that matches known def-
initions in many concrete cases. The situation is currentlysomewhat less settled
regarding trace equivalence. A number of coalgebraic approaches to trace equiv-
alence have been proposed, none of which however cover all cases of interest;
notably, all these approaches depend on explicit termination, which is not always
imposed in standard systems, e.g. LTS. Here, we discuss a joint generalization of
these approaches based on embedding functors modelling various aspects of the
system, such as transition and braching, into a global monad; this approach ap-
pears to cover all cases considered previously and some additional ones, notably
standard LTS and probabilistic labelled transition systems.

1 Introduction

It was recognized early on that the initial algebra semantics of Goguen and Thatcher [7]
needs to be extended to account for notions of observationalor behavioural equivalence,
see Giarratana, Gimona and Montanari [6], Reichel [15], andHennicker and Wirs-
ing [9]. When Aczel [2] discovered that at least one important notion of behavioural
equivalence—the bisimilarity of process algebra—is captured by final coalgebra se-
mantics, the study of coalgebras entered computer science.Whereas early work empha-
sized the duality between algebra and coalgebra, it became soon clear that both areas
have to be taken together. For example, in the work of Turi andPlotkin [18], monads
represent the programs, comonads represent their behaviour (operational semantics),
and a distributive law between them ensures that the behaviour of a composed system
is given by the behaviours of the components, or, more technically, that bisimilarity is
a congruence.

Another example of the interplay of algebraic and coalgebraic structure arises from
the desire to make coalgebraic methods available for a larger range of program equiva-
lences such as described in van Glabbeek’s [19]. To this end,Power and Turi [14] argued

http://arxiv.org/abs/1410.2463v2

that trace equivalence arises from a distributive lawTF → FT between a monadT de-
scribing the non-deterministic part and a functorF describing the deterministic part of
a transition systemX → TFX . This was taken up by Hasuo et al [8] and gave rise to a
sequence of papers [13,11,17,4,5] that discuss coalgebraic aspects of trace equivalence.

We generalize this approach and call a trace semantics for coalgebrasX → GX

simply a natural transformationG → M for some monadM . This allows us, for ex-
ample, and opposed to the work cited in the previous paragraph, to account for non-
determinstic transition systems without explicit termination. Moreover, because of the
flexibility afforded by choosingM , both trace semantics and bisimilarity can be ac-
counted for in the same setting. We also show that forG being of the specific forms
investigated in [8] and in [17,4,11] there is a uniform way ofconstructing the a natu-
ral transformation of typeG → M that induces the traces ofop.cit. up to canonical
forgetting of deadlocks.

2 Preliminaries

We work with a base categoryC, which we may assume for simplicity to be locally
finitely presentable, such as the categorySet of sets and functions.

Given a functorG : C → C, aG-coalgebrais an arrowγ : X → GX . Given two
coalgebrasγ : X → GX andγ′ : X ′ → GX ′, a coalgebra morphismf : (X, γ) →
(X ′, γ′) is an arrowf : X → X ′ in C such thatγ′ ◦ f = Gf ◦ γ.

WhenC is a concrete category, we say that two statesx ∈ X andx′ ∈ X ′ in
two coalgebras(X, γ) and(X ′, γ′) arebehaviourally equivalentif there are coalgebra
morphismsf, f ′ with common codomain(Y, δ) such thatf(x) = f ′(x′).

Behavioural equivalence can be computed in a partition-refinement style using the
final coalgebra sequence(Gn1)n<ω where1 is a final object inC andGn is n fold
application ofG. The projectionspn+1

n : Gn+11 → Gn1 are defined by induction
wherep10 : G → 1 is the unique arrow to 1 andpn+2

n+1 = G(pn+1
n).

For any coalgebra(X, γ), there is acanonical coneγn : X → Gn1 defined in-
ductively byγ0 : X → 1 andγn+1 = G(γn)γ. We say that two statesx, x′ ∈ X

in (X, γ) arefinite-depth behaviourally equivalentif γn(x) = γn(x
′) for all n < ω.

(We remark that ifG is a finitary set functor, then finite-depth behavioural equivalence
implies behavioural equivalence.)

A monadis given by an operationM on the objects ofC and, for each setX ,
a functionηX : X → MX and, for eachf : X → MY , a so-called Kleisli star
f∗ : MX → MY satisfying (i)η∗X = idMX , (ii) f∗ ◦ηX = f , (iii) (g∗ ◦f)∗ = g∗ ◦f∗

for all g : Y → MZ. It follows thatM is a functor, given byMf = (ηf)∗, andη a
natural transformation. Moreover,µ = id

∗ : MM → M is a natural transformation
and satisfiesµ ◦ Mη = µ ◦ ηM = id andµ ◦ Mµ = µ ◦ µM . We obtain the Kleisli
star back fromµ andM by f∗ = µMf .

An Eilenberg-Moore algebrafor the monadM is an arrowξ : MX → X such that
ξ ◦ ηX = idX andξ ◦Mξ = ξ ◦ µX .

Recall that an endofunctorG on a categoryC is said to generate analgebraically-
freemonadG∗ if the category of Eilenberg-Moore algebras ofG∗ is isomorphic over
C to the category ofG-algebras (i.e. morphismsGX → X). The monadG∗ is then

2

also the free monad overG; conversely, free monads are algebraically-free if the base
categoryC is complete [3,12]. E.g., whenC is locally finitely presentable, then every
finitary functor onC, representing a type of finitely-branching systems, generates an
(algebraically-)free monad.

3 A Simple Definition of Coalgebraic Trace Equivalence

Recall the classical distinction between bisimilarity andtrace equivalence, the two ends
of the linear-time-branching time spectrum[19]: to cite a much-belaboured standard
example, the two labelled transition systems (over the alphabetΣ = {a, b, c})

s0

a

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ a

 ❇
❇❇

❇❇
❇❇

❇ t0

a

��

s10

b

��

s11

c

��

t1

b

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ c

❆❆

❆❆
❆❆

❆❆

s20 s21 t20 t21

are trace equivalentin the usual sense [1], as they both admit exactly the tracesab

andac (and prefixes thereof), but not bisimilar, as bisimilarity is sensitive to the fact
that the left hand side decides in the first step whetherb or c will be enabled in the
second step, while the right hand side leaves the decision betweenb andc open in the
first step. In other words, trace equivalence collapses all future branches, retaining only
the branching at the current state. Now observe that we can nevertheless construct the
trace semantics by stepwise unfolding; to do this, we need toa) remember the last step
reached by a given trace in order to continue the trace correctly, and b) implement the
collapsing correctly in each step. E.g. fors0 above, this takes the following form: let us
call a pair(u, x) consisting of a word overΣ and a statex a pretrace. Before the first
step, we assign, by default, the set{(ǫ, s0)} of pretraces, whereǫ denotes the empty
word. After the first step, we reach, applying both transitions simultaneously, the set
{(a, s10), (a, s11)}. After the second step, we reach, again applying two transitions,
{(ab, s20), (ac, s21)}. Note that after the third step, the set of pretraces will become
empty if we proceed in the same manner, ass20 ands21 are both deadlocks. Thus, we
will in general need to remember all finite unfoldings of the set of pretraces, as traces
ending in deadlocks will be lost on the way. Of course, for purposes of trace equivalence
we are no longer interested in the states reached by a given trace, so we forget the state
components of all pretraces that we have accumulated, obtaining the expected prefix-
closed trace set{ǫ, a, ab, ac}.

Recall that we can understand labelled transition systems as coalgebrasγ : X →
P(Σ ×X). What is happening in the unfolding steps is easily recognized as composi-
tion with γ in the Kleisli category of a suitable monad, specificallyM = P(Σ∗ ×), a
monad that contains the functorP(Σ ×) via an obvious natural transformationα.
Defining γ(n) as then-fold iteration of the morphismαγ in the Kleisli category
of M , we haveγ(0)(s0) = {(ǫ, s0)}, γ(1)(s0) = {(a, s10), (a, s11)}, γ(2)(s0) =

3

{(ab, s20), (ac, s21)}, andγ(3)(s0) = ∅. Forgetting the state component of the pre-
traces in these sets amounts to postcomposing withM !, where! is the unique map into
1 = {∗}. These considerations lead to the following definitions.

Definition 1. A trace semanticsfor a functorG is a natural transformationα : G → M

into a monadM , theglobal monad. Given such anα and aG-coalgebraγ : X → GX ,
we define theiterationsγ(n) : X → MX of γ, for n ≥ 0, inductively by

γ(0) = ηX γ(n+1) = (αγ)∗γ(n)

where the unitη and the Kleisli star∗ are those ofM (in particularγ(1) = αγ). Then
theα-trace sequenceof a statex ∈ X is the sequence

Tα
γ (x) = (M !γ(n)(x))n<ω ,

with ! denoting the unique mapX → 1 as above. Two statesx andy in G-coalgebras
γ : X → GX andδ : Y → GY , respectively, areα-trace equivalentif

Tα
γ (x) = Tα

δ (y).

(Although we use an element-based formulation for readability, this definition clearly
does make sense over arbitrary complete base categories.)

Of course, one shows by induction overn that

γn+1 = (γ(n))∗αγ for all n < ω. (1)

We first note that the trace sequence factors through the initialω-segment of the terminal
sequence. Recall from Section 2 that aG-coalgebraγ induces a cone(γn) into the final
sequence.

Lemma 2. Letα : G → M be a trace semantics forG, and define natural transforma-
tionsαn : Gn → M for n < ω recursively byα0 = η andαn+1 = µαGαn. If γ is a
G-coalgebra, then

M !γ(n) = αnγn for all n < ω

for all n ∈ ω.

Proof. Induction onn.
n = 0: We haveM !γ(0) = M !η = η! = α0γ0.
n → n+ 1: We have

αn+1γn+1

= µαG(αn)Gγnγ (Definitions ofγn+1, αn+1)

= µαG(M !γ(n))γ (Inductive hypothesis)

= µM(M !γ(n))αγ (Naturality ofα)

= M !µMγ(n)αγ (Naturality ofµ)

= M !(γ(n))∗αγ

= M !γ(n+1) (1).

⊓⊔

4

Corollary 3. Finite-depth behaviourally equivalent states areα-trace equivalent.

Remark 4. In most items of related work, stronger assumptions than we make here
allow for identifying anobjectof traces in a suitable category, such as the Kleisli cate-
gory [8] or the Eilenberg-Moore category [11,4] of a monad that forms part of the type
functor. In our setting, a similar endeavour boils down to characterizing, possibly by
means of a limit of a suitable diagram, thoseα-trace sequences that areG-realizable,
i.e. induced by a state in someG-coalgebra. We do not currently have a general answer
for this but point out that in a variant of the special case treated in the beginning of the
section where we takeG to beP∗(Σ ×), with P∗ denoting nonempty powerset, and
M = P(Σ∗ ×)), the set ofG-realizable traces is the limit of the infinite diagram

M1 M1 M1 . . .

1

η

>>⑥⑥⑥⑥⑥⑥⑥⑥
P(R)

Pπ1

cc❋❋❋❋❋❋❋❋❋ Pπ2

;;①①①①①①①①①
P(R)

Pπ1

cc❋❋❋❋❋❋❋❋❋ Pπ2

;;①①①①①①①①①

whereR denotes the immediate prefix relationR = {(u, ua) | u ∈ Σ∗, a ∈ Σ} with
projectionsπ1, π2 : R → Σ∗. We expect that this description generalizes to cases
whereG andM have the formTF andTF ∗, respectively, whereT is a monad andF ∗

is the free monad over the functorF , possibly under additional assumptions. In the case
at hand, the limit of the diagram is the set of all subsetsA of Σ∗ × 1 ∼= Σ∗ that are
prefix-closed andextensiblein the sense that for everyu ∈ A there existsa ∈ Σ such
thatua ∈ A.

4 Examples

We show that various process equivalences are subsumed under α-trace equivalence.

Finite-depth behavioural equivalence One pleasant aspect ofα-trace equivalence is
that it spans, at least for finitely branching systems, the entire length of the linear-time-
branching-time spectrum, in the sense that even (finite-depth) behavioural equivalence
coincides withα-trace equivalence for a suitableα. This is conveniently formulated
using the following terminology.

Definition 5. We say that an endofunctorG on a category with a terminal object1 is
non-emptyif G1 has a global element.

Non-emptyness of an endofunctor entails that the componentof αn at 1 are sections
whereαn is as in Lemma 2.

Lemma 6. If G is non-empty and generates an algebraically-free monadG∗ with uni-
versal arrowα, then(αn)1 (the component ofαn at the terminal object) is a section for
everyn < ω.

5

Proof. For each setX , G∗X is the initialG+X-algebra, with structure map

[µα, η] : GG∗X +X → G∗X

whereµ andη are the multiplication and unit ofG∗ [3]. By Lambek’s lemma, it follows
that [µα, η] is an isomorphism. Since both summands of the coproductGG∗1 + 1 are
nonempty (forGG∗1, this follows from non-emptyness ofG: we obtain a global ele-
ment ofGG∗1 by postcomposing a global element ofG1 with Gη1 : G1 → GG∗1), the
coproduct injections are sections, so we obtain thatµα andη are sections, each being
the composite of a section with an isomorphism. Using (1), itfollows by induction that
αn is a section for eachn < ω. ⊓⊔

(Notice thatG is non-empty as soon as anyGX has a global element; if the base cate-
gory isSet, then every functor is non-empty except the constant functor for ∅.)

Proposition 7. If G is non-empty and generates an algebraically-free monad viaα :
G → G∗, thenα-trace equivalence coincides withω-behavioural equivalence.

Proof. Immediate from Lemmas 2 and 6 ⊓⊔

Labelled Transition Systems (LTS) We provide some additional details for our ini-
tial example: We haveGX = P(Σ × X) andMX = P(Σ∗ × X), with α the
obvious inclusion. The monadM arises fromG, as we will see later again in (2),
from a distributive lawδX : Σ × P(X) → P(Σ × X) which maps a pair(a, S)
to {a}×S. Explicitly, the unit ofM is given byη(x) = {(ǫ, x)}, and the multiplication
by µ(A) = {(uv, x) | ∃(u, S) ∈ A. (v, x) ∈ S} for A ∈ P(Σ∗ × P(Σ∗ × X)). For
eachn and each statex in an LTSγ : X → P(Σ×X), γ(n)(x) consists of the pretraces
of x of length exactlyn, i.e.

γ(n)(x) = {(u, y) | x
u
→ y, u ∈ Σn}

where
u
→ denotes the usual extension of the transition relation to wordsu ∈ Σ∗. Thus,

M !γ(n)(x) consists of the traces ofx of lengthn, i.e. M !γ(n)(x) = {(u, ∗) | x
u
→

, u ∈ Σn} (where, as usual,x
u
→ denotes∃y.x

u
→ y). Thus, statesx andy areα-

trace equivalent iff they are trace equivalent in the usual sense, i.e. iff{u ∈ Σ∗ | x
u
→

} = {u ∈ Σ∗ | y
u
→}. The entire scenario transfers verbatim to the case of finitely

branching LTS, withG = Pω(Σ ×) andM = P<ω(Σ
∗ ×), whereP<ω denotes

finite powerset.

LTS with explicit termination The leading example treated in related work on coal-
gebraic trace semantics [8,11,4] is a variant of LTS with explicit termination, described
as coalgebras for the functor

P(1 +Σ ×) ∼= 2× PΣ .

A state in an LTS with explicit termination can be seen as a non-deterministic automa-
ton; this suggests that one might expect the traces of such a state to be the words ac-
cepted by the corresponding automaton, and this in fact the stance taken in previous

6

work [8,11,4]; for the sake of distinction, let us call this form of trace semanticslan-
guage semantics. Staring at the problem for a moment reveals that language semantics
does not fit directly into our framework: Basically, our definition of trace sequence as-
sembles the traces via successive iteration of the coalgebra structure, and remembers
the traces reached in each iteration step. Contrastingly, language semantics will drop a
word from the trace set if it turns out that upon complete execution of the word, no ac-
cepting state is reached – inα-trace semantics, on the other hand, we will have recorded
prefixes of the word on the way, and our incremental approach does not foresee forget-
ting these prefixes. See Section 5 for a discussion of howα-trace sequences can be
further quotiented to obtain language semantics.

Indeed one might contend that a more natural trace semanticsof an LTS with
explicit termination will distinguish two types of traces:those induced by the plain
LTS structure, disregarding acceptance, and those that additionally end up in accepting
states; this is related to the trace semantics of CSP [10], which distinguishes deadlock
from successful terminationX. Such a semantics is generated by our framework as fol-
lows. As the global monad, we takeMX = P(Σ∗ × (X + 1)) (where we regardX
and1 = {X} as subsets ofX + 1), with η(x) = {(ǫ, x)} and

f∗(S) = {(uv, b) | ∃(u, x) ∈ S ∩ (Σ∗ ×X). (v, b) ∈ f(x)} ∪ (S ∩ (Σ∗ × 1))

for f : X → MY andS ∈ MY . This is exactly the monad induced by the distributive
lawλX : 1+Σ×P(X) → P(1+Σ×X)with λX(X) = {X} andλX(a, S) = a×S as
used by Hasuo et al. [8]. We embedP(1+Σ×) intoM by the natural transformation
α given by

αX(S) = {(ǫ,X) | X ∈ S} ∪ {(a, x) | (a, x) ∈ S}

(implicitly converting letters into words in the second part). ThenM1 ∼= P(Σ∗)2 where
the first components records accepted words and the second component non-blocked
words; inα-trace sequences, the first component is always contained inthe second
one, and increases monotonically over the sequence as the Kleisli star as defined above
always keeps traces that are already accepted. Two states areα-trace equivalent iff they
generate the same traces and the same accepted traces, in thesense discussed above.

All this is not to say that our framework does not cover the language semantics of
non-deterministic automata. Note that we can impose w.l.o.g. that a non-deterministic
automaton never blocks an input letter – if a state fails to have ana-successor, just add
ana-transition into a non-accepting state that loops on all input letters and has no tran-
sitions into other states; this clearly leaves the languageof the automaton unchanged.
This restriction amounts to considering coalgebras for thesubfunctor

G = 2× (P∗)Σ

of the functorP(1 + Σ ×) modelling LTS with explicit termination, whereP∗ de-
notes non-empty powerset. We embed this functor into the same monadM as above,
by restrictingα : P(1 + Σ ×) → M to G. Calling G-coalgebrasnon-blocking
non-deterministic automata, we now have thattwo states in a non-blocking non-
deterministic automaton areα-trace equivalent iff they accept the same language. For
a coalgebraγ : X → GX , the mapsγ(n) : X → M1, of course, still record accepted

7

traces as well as plain traces, but the plain traces no longercarry any information: all
α-trace sequences have the form(Ln, Σ

n)n<ω (with Ln ⊆ Σ∗ recording the accepted
words of length at mostn).

Probabilistic Transition Systems Recall thatgenerative probabilistic (transition) sys-
tems(for simplicity without the possibility of deadlock, not tobe confused with explicit
termination) are modelled as coalgebras for the functorD(Σ×) whereD denotes the
discrete distribution functor (i.e.D(X) is the set of discrete probability distributions
on X , andD(f) takes image measures underf). That is, each state has a probability
distribution over pairs of actions and successor states. WeembedD(Σ ×) into the
global monadMX = D(Σ∗ ×) via the natural transformationα that takes a discrete
distributionµ onΣ ×X to the discrete distribution onΣ∗ ×X that behaves likeµ on
Σ ×X (where we seeΣ as a subset ofΣ∗) and is0 outsideΣ ×X . The unitη of M
mapsx ∈ X to the Dirac distribution at(ǫ, x), and forf : X → MY ,

f∗(µ)(u, y) =
∑

u=vw,x∈X

µ(v, x)f(x)(w, y)

for all µ ∈ MX , (u, y) ∈ Σ∗ × Y . This is the monad induced by the canonical dis-
tributive law [8]λ : Σ ×D → D(Σ ×) given byλX(a, µ) = δ(a) ∗ µ whereδ forms
Dirac measures and∗ is product measure. We identifyM1 with D(Σ∗). Given these
data, observe that forγ : X → D(Σ ×X) andx ∈ X , each distributionM !γ(n)(x) is
concentrated at traces of lengthn.

Assume from now on thatΣ is finite. Recall that the usualσ-algebra on the set
Σω of infinite words overΣ is generated by thecones, i.e. the setsv↑ = {vw | w ∈
Σω}, v ∈ Σ∗, which (by finiteness ofΣ) form a semiring of sets. We let statesx
in a coalgebraγ : X → D(Σ × X) inducedistributionsµx on Σω via the Hahn-
Kolmogorov theorem, defining a contentµ(v↑) inductively by

µx(ǫ↑) = 1

µx(av↑) =
∑

x′∈X

γ(a, x′)µx′(v↑)

– a compactness argument, again hinging on finiteness ofΣ, shows that no cone be
written as a countably infinite disjoint union of cones, soµ is in fact a pre-measure, i.e.
σ-additive.

We note explicitly

Proposition 8. States in generative probabilistic systems over a finite alphabetΣ are
α-trace equivalent iff they induce the same distribution onΣω.

Proof. For v a word of lengthn andx a state in a generative probabilistic system, we
have

µx(v↑) = (M !γ(n)(x))(v).

⊓⊔

8

5 Relation to Other Frameworks

Kleisli Liftings Hasuo et al. [8] treat the case where the type functorG has the form
TF for a monadT and a finitary endofunctorF on sets. They require thatF lifts to a
functor F̄ on the Kleisli category ofT , which is equivalent to having a (functor-over-
monad) distributive law

λ : FT → TF.

They impose further conditions that include a cppo structure on the hom-sets of the
Kleisli categoryKl(T) of T and ensure that

– T ∅ is a singleton, so that∅ is a terminal object inKl(T) (unique Kleisli morphisms
into ∅ of course being⊥); and

– the final sequence of̄F coincides on objects with the initial sequence ofF , and
converges to the final̄F -coalgebra inω steps.

The trace semantics of aTF -coalgebra is then defined as the unique Kleisli morphism
into the final F̄ -coalgebra; in keeping with distinguishing terminology used in Sec-
tion 4, we refer to this as language semantics. Thus, two states in aTF -coalgebra are
language equivalent, i.e. trace equivalent in the sense of Hasuo et al., iff they map to
the same values in the final sequence ofF̄ under the cones induced by the respec-
tive coalgebras. Explicitly: the underlying sets of the final sequence ofF̄ have the
form TFn∅, n < ω, and given a coalgebraγ : X → TFX , the canonical cone
(γ̄n : X → TFn∅)n<ω is defined recursively byγ0 = ⊥ and

γ̄n+1 = X
γ

// TFX
TF γ̄n // TFTFn∅

Tλ // TTFn+1∅
µ

// TFn+1∅.

Now the distributive lawλ induces a monad structure on the functor

M = TF ∗, (2)

whereF ∗ denotes the (algebraically-)free monad onF (cf. Section 4), and we have a
natural transformationα : TF → M , so that the situation fits our current framework.
The setsTFnX embed intoMX , so that the objects in the final sequence ofF̄ can be
seen as living inM0. The definition of̄γn+1 is then seen to be just an explicit form of
Kleisli composition inM ; that is, we can, for purposes of language equivalence, replace
theγ̄n with mapsγ̃n : X → M0 defined recursively by

γ̃0 = ⊥ γ̃n+1 = γ̃∗
nαγ

where the Kleisli star is that ofM . Comparing with (1), we see that the only difference
with the definition ofγ(n) is in the base of the recursion:γ(0) = ηX . Noting moreover
that

⊥∗M !ηX = ⊥∗η! = ⊥! = ⊥,

we obtain
γ̃n = ⊥∗M !γ(n).

(Kissig and Kurz [13] use a very similar definition in a more general setting that in
particular, for non-commutativeT , does not restrictT ∅ to be a singleton, and instead

9

assume some distinguished elemente ∈ T ∅. They then put̃γ0 = λx. e; the comparison
with our framework is then entirely analogous.)

Summing up,language equivalence is induced fromα-trace equivalence by post-
composingα-trace sequences with⊥∗ : M1 → M0. Intuitively, this means that any
information tied to poststates in a pretrace is erased in language equivalence, as op-
posed to just forgetting the poststate itself inα-trace equivalence. An example of this
phenomenon are LTS with explicit termination as discussed in Section 4. Moreover,
this observation elucidates why language equivalence becomes trivial in cases without
explicit termination, such as standard LTS: here, all traces are tied to poststates and
hence are erased when postcomposing with⊥∗. (This is also easily seen directly [8]:
without explicit termination, e.g.F = Σ× , one typically hasF∅ = ∅ so that the final
F̄ -coalgebra is trivial in the Kleisli category ofM .)

Eilenberg-Moore Liftings An alternative route to final objects for trace semantics
was first suggested by the generalized powerset construction of Silva et al. [16] and
explicitly formulated in [4] (see also Jacobs et al. [11] where this is compared to the
semantics given by Kleisli liftings). In this approach one considers liftings of functors to
Eilenberg-Moore categories in lieu of Kleisli categories.The setup applies to functors
of the formG = FT whereF is an endofunctor andT is a monad on a base categoryC.
It is based on assuming a finalF -coalgebraZ and a (functor-over-monad) distributive
law

ρ : TF → FT.

Under these assumptions,F lifts to an endofunctor̂F on the Eilenberg-Moore cate-
gory C

T of T , and the free-algebra functorC → C
T lifts to a functorD from FT -

coalgebras tôF -coalgebras, which can be seen as a generalized powerset construction.
Explicitly, D(γ) = FµT

XρTXTγ for γ : X → FTX , whereµT denotes the multiplica-
tion ofT . In other words,D(γ) : TX → FTX is the uniqueT -algebra morphism with
D(γ) · ηTX = γ. Moreover,F̂ has a final coalgebra with carrierZ. Theextension se-
mantics(i.e. trace semantics obtained via the powerset extension)of anFT -coalgebra
γ : X → FTX is then obtained by first applyingD to γ, obtaining aF̂ -coalgebra with
carrierTX and hence âF -coalgebra mapTX → Z, and finally precomposing with
ηTX : X → TX whereηT denotes the unit ofT .

In order to compare this with our framework, in which we currently consider only
finite iterates of the given coalgebra, we need to assume thatF -behavioural equivalence
coincides with finite-depth behavioural equivalence; thisis ensured e.g. by assuming
thatF is a finitary endofunctor onSet. In this case, two states have the same extension
semantics iff they induce the same values in the firstω steps of the final sequence ofF̂ ,
whose carriers coincide with the final sequence ofF . Combining the definition ofDγ

for a coalgebraγ : X → FTX with the usual construction of the canonical cone for
Dγ, which we denote bȳγn : TX → Fn1 for distinction from the canonical cone ofγ
in the final sequence ofFT , we obtain that̄γn is recursively defined by

γ̄0 = !TX : TX → 1

γ̄n+1 = F γ̄nTγρFµT .

10

Now let us also assume thatT is a finitary monad onSet. ThenSetT is a locally finitely
presentable category, and since the forgetful functor toSet creates filtered colimits, we
see that the liftingF̂ is finitary onSetT . Hence freeF̂ -algebras exists, which implies
that we have the adjunction on the right below

Set
//

⊥ SetToo
//

⊥ Alg F̂oo ,

and the adjunction on the left is the canonical one. We defineM to be the monad of the
composed adjunction; it assigns to a setX the underlying set̂F ∗TX of a freeF̂ -algebra
on the freeT -algebraTX ; hereF̂ ∗ denotes the free monad on̂F (notice that this is not
in general a lifing of the free monad onF to SetT). Intuitively,M is defined by forming
the disjoint union of the algebraic theories associated toT andF , respectively, and then
imposing the distributive law between the operations ofT andF embodied byρ. In the
following we shall denote the unit and multiplication ofF̂ ∗ by η̂ andµ̂, respectively.
We also writeϕ̂X : F̂ F̂ ∗X → F̂ ∗X for the structures of the freêF -algebras and note
that these yield a natural transformationϕ̂.

Now denote bŷκ : F̂ → F̂ ∗ the universal natural transformation into the free
monad; it is easy to see thatκ̂ = ϕ̂ · F̂ η̂. Then it follows thatα = κ̂T yields a natural
transformation fromFT to M (onSet). Let us further recall that there exist canonical
natural transformationŝβn : F̂n → F̂ ∗ defined inductively by

β̂0 = (Id
η̂

//F̂ ∗) and β̂n+1 = (F̂n+1 = F̂ F̂n F̂ β̂n

// F̂ F̂ ∗
ϕ̂

// F̂ ∗).

We can assume w.l.o.g. thatF preserves monos (hence, so doesF̂ since monos inSetT

are precisely injectiveT -algebra homomorphisms) and that coproduct injections are
monic inSetT . Then an easy induction shows that theβn are monic, too. (One uses
that[η̂, φ̂] : Id + F̂ F̂ ∗ ∼= F̂ ∗.) This implies that for testing equivalence in the extension
semantics we can replaceγ̄n with

γ̂n = βn
1 · γ̄n : TX → F̂ ∗1.

We are now ready to state the semantic comparison result:

Theorem 9. LetF be a finitary endofunctor, and letT be a finitary monad, both onSet.
Further letρ : TF → FT be a functor-over-monad distributive law. Then two states in
FT -coalgebras are equivalent under the extension semantics iff for α : FT → M as
given above, theirα-trace sequences are identified under componentwise postcomposi-
tion with F̂ ∗!T1. That is, in the above notation,

γ̂n · ηTX = F̂ ∗!T1 ·M !X · γ(n). (3)

Proof. We first recall how the Kleisli extensionf 7→ f∗ for the monadM is obtained.
Given f : X → MY one first extends this to the uniqueT -algebra morphismf ♯ :
TX → MY with f ♯ · ηTX = f (i. e. one applies the Kleisli extension ofT). Then one
obtainsf∗ : MX = F̂ ∗TX → F̂ ∗TY = MY as the uniquêF -algebra morphism with
f∗ · η̂TX = f ♯. Notice that in this notation we haveD(γ) = γ♯ and that the inductive
step of the definition on̄γn can be written as̄γn+1 = F̂ γ̄n · γ♯ : TX → F̂n1. Observe

11

further that, sincêγn, F̂ ∗!T1 andM ! areT -algebra homomorphisms, (3) is equivalent
to

γ̂n = F̂ ∗!T1 ·M !X · (γ(n))♯. (4)

We now prove (3) by induction onn. For the base casen = 0 we have:

F̂ ∗!T1 ·M !X · γ(0) = F̂ ∗!T1 · F̂
∗T !X · ηMX M = F̂ ∗T and def. ofγ(0)

= F̂ ∗!T1 · F̂ ∗T !X · η̂TX · ηTX sinceηM = η̂T · ηT

= η̂1 · !T1 · T !X · ηTX naturality ofη̂
= η̂1 · !TX · ηTX uniqueness of!TX

= β̂0
1 · γ̄0 · ηTX def. of β̂0 andγ̄0

= γ̂0 · ηTX def. of γ̂0.

For the induction step we compute:

F̂ ∗!T1 ·M !X · γ(n+1)

= F̂ ∗!T1 · F̂ ∗T !X · (γ(n))∗ · αX · γ M = F̂ ∗T and def. ofγ(n+1)

= F̂ ∗!T1 · F̂ ∗T !X · (γ(n))∗ · ϕ̂X · F̂ η̂TX · γ def. ofα
= ϕ̂1 · F̂ F̂ ∗!T1 · F̂ F̂ ∗T !X · F̂ (γ(n))∗ · F̂ η̂TX · γ F̂ -algebra morphisms
= ϕ̂1 · F̂ F̂ ∗!T1 · F̂ F̂ ∗T !X · F̂ (γ(n))♯ · γ def. of(−)∗

= ϕ̂1 · F̂ γ̂n · γ induction hypothesis (4)
= ϕ̂1 · F̂ β̂n

1 · F̂ γ̄n · γ def. of γ̂n

= β̂n+1
1 · F γ̄n · γ def. ofβn+1

= β̂n+1
1 · F γ̄n · γ♯ · ηTX (−)♯ Kleisli extension

= β̂n+1
1 · γ̄n+1 · ηTX def. of γ̄n+1

= γ̂n+1 · ηTX def. of γ̂n+1. ⊓⊔

In the base example in work on extension semantics [11,4], the case of non-
deterministic automata understood as coalgebras of the form γ : X → 2 × P(X)Σ,
the situation is as follows. The extension semantics ofγ [11, Section 5.1] yields a map
tr : X → P(Σ∗) that maps each statex ∈ X to the language accepted by the automa-
ton with starting statex.

To understand the above theorem in terms of this concrete example, we fixFX =
2×XΣ andTX = P<ω(X) (to ensure finitarity). Understood as an algebraic signature,
F can be represented by twoΣ-ary function symbolsy andn. The monadM = F̂ ∗T

has these operations and those ofP<ω, i.e. the join semilattice operations, which we
write using set notation; the distributive lawρ allows us to distribute joins overy andn,
favouringy overn to reflect the acceptance condition of (existential) non-deterministic
automata. The trace semanticsαX : FTX → MX embeds flat terms, i.e. terms of
the formy((Ua)a∈Σ) or n((Ua)a∈Σ) ∈ FTX (with Ua ∈ P(X)), into general (non-
flat) terms. Every step in the construction ofγn(c) puts a flat term on top of terms
constructed in the previous step, and then distributesT -operations (joins) over their
arguments as indicated. Therefore, the termsγ(n)(c) are terms of uniform depth in the
F -operations over sets of variables, i.e. they are elements of FnTC. For the alphabet
Σ = {0, 1}, a typical component of the trace sequenceTα

γ (c), i.e. M !Xγ(n)(c) for

12

somen can be visualised as a tree like the one on the left:

y

0

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

1

 ❇
❇❇

❇❇
❇❇

❇ y

0

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

1

 ❇
❇❇

❇❇
❇❇

❇

n

0

��✡✡
✡✡
✡✡

1

��
✵✵
✵✵
✵✵

y

0

��✍✍
✍✍
✍✍ 1

��
✹✹
✹✹
✹✹

n

0

��✍✍
✍✍
✍✍
✍

1

��
✵✵
✵✵
✵✵
✵ y

0

��✍✍
✍✍
✍✍ 1

��
✶✶
✶✶
✶✶

{∗} ∅ ∅ {∗} ∗ ∗ ∗ ∗.

This tree conveys the information that the empty wordǫ and the word1 lead to final
states (i.e. are accepted in the sense of language semantics), and additionally that00
and11 are not blocked; generally, theα-trace sequence records at each stage which
words are accepted and additionally which words can be executed without deadlock.
The tree on the right is then obtained by applyingF̂ ∗!T1. This erases the information
on non-blocked words, so that only the information thatǫ and1 are accepted remains;
this yields the extension semantics [11,4], i.e. language semantics of the automaton,
as formally stated in Theorem 9. As noted already in Section 4, if we move to non-
blocking non-deterministic automata, thenα-trace equivalence coincides directly with
language equivalence – note that in this case,T is non-empty powerset, so that!T1 is a
bijection, i.e. postcomposing theα-trace sequence witĥF ∗!T1 does not lose informa-
tion. Informally, this is clear as non-acceptance of words due to deadlock never happens
in a non-blocking nondeterministic automaton.

Fixpoint Definitions Trace semantics, and associated linear-time logics, are also con-
sidered in [5]. The framework considered inop.cit. is similar to that of [8] in that it
applies to systems of typeX → TFX whereT is a monad (that describes the branch-
ing) andF a polynomial endofunctor (modelling the traces). The monadT is required
to be commutative and partially additive, thus inducing a partial additive semiring struc-
ture onT 1. In the examples of interest, one recovers the monadT as induced by this
semiring structure.

Given a system(X, f : X → TFX), trace semantics then arises as aT 1-valued
relationR : X × Z → T 1 whereZ = νF is the final coalgebra of the functorF
defining traces. For this to be well-defined, one additionally requires that the semiring
T 1 has suprema of chains, with order defined in the standard way.

The crucial difference to our approach is that trace semantics is definedcoinduc-
tively on theinfinite unfoldingof the functorF defining the shape of traces, whereas
our definition isinductiveand based onfinite unfoldings.

The difference becomes apparent when looking at examples. For labelled transition
systemsX → P(A×X), the trace semantics ofop.cit.is a functionX → P(Aw) that
mapsx to the set of maximal traces, and two states are trace equivalent if they have
the same set ofinfinite traces. This contrasts with our treatment where equivalentstates
have the samefinite traces. Similarly, for generative probabilistic systems,i.e. systems
of shapeX → D(A × X) whereD is the discrete distributions functor,op.cit. the
trace semantics obtained inop.cit.associates probabilities to maximal (infinite) traces

13

whereas our treatment is centered around probabilities of finite prefixes. In summary,
the main conceptual difference between [5] and our approachis that between infinite
and finite traces. Technically, this difference is manifestin the coinductive definition of
op.cit.whereas our approach defines traces inductively.

6 Conclusions

One of the main important aspects of the general theory of coalgebra is a uniform theory
of strong bisimulation. In coalgebraic terms, strong bisimulation is a simple concept,
readily defined, supports a rich theory and instantiates to the natural and known no-
tions for concretely given transition types. Instead of re-establishing facts about strong
bisimulation on a case-by-case basis, separately for each type of transition system, the
coalgebraic approach provides a general theory of which specific results for concretely
given systems are mere instances: a coalgebraic success story.

The question about whether a similar success story for traceequivalence can also
be told in a coalgebraic setting has been the subject of numerous papers (discussed in
the previous section in detail) but has so far not received a satisfactory answer.

One of the reasons why trace semantics has so far been a more elusive concept is the
fact that – even for concretely given systems such as labelled transition systems with
explicit termination – there are many, equally natural, formulations of trace equivalence.
This suggests that trace equivalence, by its very nature, cannot be captured by one
general definition, but needs an additional parameter that defines the precise nature of
traces one wants to capture.

In contrast to other approaches in the literature, we account for this fact by
parametrising trace semantics by an embedding of a functor (that defines the coalge-
braic type of system under consideration) into a monad (thatallows us to sequence tran-
sitions). As a consequence, our definition is more flexible, and subsumes existing no-
tions. Conceptually speaking, this manifests itself in thefact that other approaches im-
pose various technical conditions like order enrichment orpartial additivity of a monad
that are geared towards capturing aspecificnotion of trace equivalence, whereas our
definition is parametrised to capture the entire range of thelinear-time branching-time
spectrum. This is evidenced by Proposition 7 that shows that(even) strong bisimulation
is a specific instance of our parameterised definition.

Technically, we have presented a simplified notion of a semantics of finite traces
for coalgebras. This novel account allows us to deal with newexamples and subsumes
previous proposals of a semantics of finite traces. Important points for future work
include a generalisation to behavioural preorders, as wellas appropriate logics that
characterise these preorders and ensuing equivalences.

References

1. L. Aceto, A. Ingólfsdóttir, K. Larsen, and J. Srba.Reactive systems: modelling, specification
and verification. Cambridge University Press, 2007.

2. P. Aczel.Non-Well-Founded Sets. CSLI, Stanford, 1988.
3. M. Barr. Coequalizers and free triples.Math. Zeitschr., 116:307–322, 1970.

14

4. M. M. Bonsangue, S. Milius, and A. Silva. Sound and complete axiomatizations of coalge-
braic language equivalence.ACM Trans. Comput. Log., 14(1:7), 2013.

5. C. Cı̂rstea. A coalgebraic approach to linear-time logics. InFoundations of Software Science
and Computation Structures, FoSSaCS 2014, vol. 8412 ofLNCS, pp. 426–440. Springer,
2014.

6. V. Giarratana, F. Gimona, and U. Montanari. Observability concepts in abstract data type
specifications. InMathematical Foundations of Computer Science, MFCS 1976, vol. 45 of
LNCS, pp. 576–587. Springer, 1976.

7. J. Goguen and J. Thatcher. Initial algebra semantics. InSwitching and Automata Theory,
SWAT (FOCS) 1974, pp. 63–77. IEEE Computer Society, 1974.

8. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction.Log. Methods
Comput. Sci., 3, 2007.

9. R. Hennicker and M. Wirsing. Observational Specification: A Birkhoff Theorem. InWork-
shop on Theory and Applications of Abstract Data Types, WADT1985, Selected Papers, pp.
119–135. Springer, 1985.

10. A. Hoare.Communicating sequential processes. Prentice Hall, 1985.
11. B. Jacobs, A. Silva, and A. Sokolova. Trace semantics viadeterminization. InCoalgebraic

Methods in Computer Science, CMCS 2012, vol. 7399 ofLNCS, pp. 109–129. Springer,
2012.

12. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids,
colimits, associated sheaves, and so on.Bull. Austral. Math. Soc., 22:1–83, 1980.

13. C. Kissig and A. Kurz. Generic trace logics. arXiv preprint 1103.3239, 2011.
14. J. Power and D. Turi. A coalgebraic foundation for lineartime semantics. InCoalgebraic

Methods in Computer Science, CMCS 1999, vol. 29 ofENTCS, pp. 259–274. Elsevier, 1999.
15. H. Reichel. Behavioural equivalence a unifying conceptfor initial and final specification

methods. InMath. Models in Comp. Systems, Proc. 3rd Hungarian Comp. Sci. Conference,
pp. 27–39, 1981.

16. A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the powerset construction,
coalgebraically. In K. Lodaya and M. Mahajan, eds.,Proc. IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010),
vol. 8 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 272–283, 2010.

17. A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M. Rutten. Generalizing determinization
from automata to coalgebras.Log. Methods Comput. Sci, 9(1:9), 2013.

18. D. Turi and G. Plotkin. Towards a mathematical operational semantics. InLogic in Computer
Science, LICS 1997, pp. 280–291, 1997.

19. R. van Glabbeek. The linear time-branching time spectrum (extended abstract). InTheories
of Concurrency: Unification and Extension, CONCUR 1990, vol. 458 ofLNCS, pp. 278–297.
Springer, 1990.

15

	Simplified Coalgebraic Trace Equivalence

