arXiv:1410.2463v2 [cs.LO] 16 Oct 2014

Simplified Coalgebraic Trace Equivalence

Alexander Kurz, Stefan Miliug, Dirk PattinsoR, and Lutz Schrodér

L University of Leicester
2 The Australian National University
3 Friedrich-Alexander-Universitat Erlangen-Niirnberg

Abstract. The analysis of concurrent and reactive systems is baselditgeade-
gree on various notions of process equivalence, rangintheso-called linear-
time/branching-time spectrum, from fine-grained equiveés such as strong
bisimilarity to coarse-grained ones such as trace equigaleThe theory of con-
current systems at large has benefited from developmentsailgebra, which
has enabled uniform definitions and results that providenancon umbrella for
seemingly disparate system types including non-detestitniweighted, proba-
bilistic, and game-based systems. In particular, therebkas some success in
identifying a generic coalgebraic theory of bisimulatibatmatches known def-
initions in many concrete cases. The situation is currestdlyewhat less settled
regarding trace equivalence. A number of coalgebraic a@mes to trace equiv-
alence have been proposed, none of which however coversdbazf interest;
notably, all these approaches depend on explicit ternminatihich is not always
imposed in standard systems, e.g. LTS. Here, we discusstameralization of
these approaches based on embedding functors modellimysaspects of the
system, such as transition and braching, into a global mah&lapproach ap-
pears to cover all cases considered previously and someéamdiones, notably
standard LTS and probabilistic labelled transition system

1 Introduction

It was recognized early on that the initial algebra semamicoguen and Thatchér [7]
needs to be extended to account for notions of observatiwhahavioural equivalence,
see Giarratana, Gimona and Montanaii [6], Reichel [15], Hednicker and Wirs-
ing [9]. When Aczel[2] discovered that at least one impartastion of behavioural
equivalence—the bisimilarity of process algebra—is cegatuby final coalgebra se-
mantics, the study of coalgebras entered computer scigvtoereas early work empha-
sized the duality between algebra and coalgebra, it becanredear that both areas
have to be taken together. For example, in the work of TuriRlatkin [1&], monads
represent the programs, comonads represent their behdoejperational semantics),
and a distributive law between them ensures that the betwagfea composed system
is given by the behaviours of the components, or, more tealipj that bisimilarity is
a congruence.

Another example of the interplay of algebraic and coalgielstaucture arises from
the desire to make coalgebraic methods available for anaagge of program equiva-
lences such as described in van Glabbeék’s [19]. To thisRmer and Turi[14] argued

http://arxiv.org/abs/1410.2463v2

that trace equivalence arises from a distributive Taiv — F'T" between a monadl de-
scribing the non-deterministic part and a functodescribing the deterministic part of
a transition systenX — T'F' X . This was taken up by Hasuo etal [8] and gave rise to a
sequence of papeis [[L3|11/1[7]4,5] that discuss coalgespécts of trace equivalence.

We generalize this approach and call a trace semantics &gelorasX — GX
simply a natural transformatio® — M for some monad\/. This allows us, for ex-
ample, and opposed to the work cited in the previous paragtapaccount for non-
determinstic transition systems without explicit terntioa. Moreover, because of the
flexibility afforded by choosingV/, both trace semantics and bisimilarity can be ac-
counted for in the same setting. We also show thatddrseing of the specific forms
investigated in[[B] and in [17J4,11] there is a uniform waycohstructing the a natu-
ral transformation of typ& — M that induces the traces op.cit. up to canonical
forgetting of deadlocks.

2 Preliminaries

We work with a base catego§, which we may assume for simplicity to be locally
finitely presentable, such as the categesy of sets and functions.

Given a functoiGG : C — C, aG-coalgebrais an arrowy : X — GX. Given two
coalgebrag : X — GX andy’ : X’ — GX’, acoalgebra morphisnf : (X,v) —
(X',~")isanarrowf : X — X’ in Csuchthaty o f = Gf o~.

When C is a concrete category, we say that two states X andz’ € X' in
two coalgebrasX,v) and(X’,~’) arebehaviourally equivalenif there are coalgebra
morphismsf, f’ with common codomaif’, §) such thatf (z) = f'(a).

Behavioural equivalence can be computed in a partitiomeaient style using the
final coalgebra sequendg:"1),,«,, wherel is a final object inC andG™ is n fold
application of G. The projectiong?*! : G"*'1 — G"1 are defined by induction
wherep} : G — 1is the unique arrow to 1 ang! 17 = G(prt?).

For any coalgebréX,~), there is acanonical coney,, : X — G"1 defined in-
ductively by~y : X — 1 andvy,4+1 = G(v,)7y. We say that two states, 2’ € X
in (X,~) arefinite-depth behaviourally equivaleifty, () = v, (2’) forall n < w.
(We remark that if7 is a finitary set functor, then finite-depth behavioural gglénce
implies behavioural equivalence.)

A monadis given by an operatiod/ on the objects ofC and, for each sek,
a functionnx : X — MX and, for eachf : X — MY, a so-called Kleisli star
f*: MX — MY satisfying ()n% = idux, (i) f*onx = f, (iii) (g*of)* =g*o f*
forallg : Y — MZ. It follows that M is a functor, given byM f = (nf)*, andn a
natural transformation. Moreover, = id* : MM — M is a natural transformation
and satisfiegs o Mn = ponM = id andpu o My = p o uM. We obtain the Kleisli
star back fromu andM by f* = uM f.

An Eilenberg-Moore algebréor the monadV/ is an arrowg : M X — X such that
Eony =idx ando ME& =Eopux.

Recall that an endofunct@¥ on a categon(C is said to generate agebraically-
freemonadG* if the category of Eilenberg-Moore algebras@f is isomorphic over
C to the category of5-algebras (i.e. morphismsX — X). The monad=* is then

also the free monad oveéf; conversely, free monads are algebraically-free if theebas
categoryC is complete[[3,12]. E.g., whe@ is locally finitely presentable, then every
finitary functor onC, representing a type of finitely-branching systems, gdasran
(algebraically-)free monad.

3 A Simple Definition of Coalgebraic Trace Equivalence

Recall the classical distinction between bisimilarity arate equivalence, the two ends
of the linear-time-branching time spectrufi9]: to cite a much-belaboured standard
example, the two labelled transition systems (over theadph™ = {a, b, c})

S0 to
a
810 S11 131
bJ{ lc / \
520 $21 t20 o1

aretrace equivalenin the usual sensé|[1], as they both admit exactly the trages
andac (and prefixes thereof), but not bisimilar, as bisimilargysensitive to the fact
that the left hand side decides in the first step whether ¢ will be enabled in the
second step, while the right hand side leaves the decisittvebab andc open in the
first step. In other words, trace equivalence collapsesialté branches, retaining only
the branching at the current state. Now observe that we ozrtheless construct the
trace semantics by stepwise unfolding; to do this, we ne@) temember the last step
reached by a given trace in order to continue the trace dtyraad b) implement the
collapsing correctly in each step. E.g. ferabove, this takes the following form: let us
call a pair(u, x) consisting of a word oveE’ and a state: a pretrace Before the first
step, we assign, by default, the ¢, so)} of pretraces, where denotes the empty
word. After the first step, we reach, applying both transgigimultaneously, the set
{(a, s10), (a, s11)}. After the second step, we reach, again applying two transit
{(ab, s20), (ac, s21)}. Note that after the third step, the set of pretraces willobee
empty if we proceed in the same mannersasands,; are both deadlocks. Thus, we
will in general need to remember all finite unfoldings of tle¢ af pretraces, as traces
ending in deadlocks will be lost on the way. Of course, fogmses of trace equivalence
we are no longer interested in the states reached by a gves, 50 we forget the state
components of all pretraces that we have accumulated nifgaihe expected prefix-
closed trace sefte, a, ab, ac}.

Recall that we can understand labelled transition systent®algebray : X —
P(X x X). What is happening in the unfolding steps is easily recagh&s composi-
tion with -y in the Kleisli category of a suitable monad, specificdify= P(X* x _), a
monad that contains the funct&(X x _) via an obvious natural transformation
Defining v(") as then-fold iteration of the morphismyy in the Kleisli category
of M, we havey”)(so) = {(¢,50)}, v (s0) = {(a,510), (a,511)}, 7P (s0) =

{(ab, 520), (ac, s21)}, andy3)(sg) = (. Forgetting the state component of the pre-
traces in these sets amounts to postcomposingMithwhere! is the unique map into
1 = {x}. These considerations lead to the following definitions.

Definition 1. A trace semanticfr a functorG is a natural transformation: G — M
into a monadV/, theglobal monadGiven such amv and aG-coalgebray : X — G X,
we define théterationsy(") : X — M X of ~, forn > 0, inductively by

((n+1) _ (

YO =nx ~ ay) ™

where the unit) and the Kleisli stag are those of\f (in particulary(*) = o). Then
thea-trace sequencef a stater € X is the sequence

Tva(x) = (M!'V(n)(x))n<wv
with ! denoting the uniqgue mafi — 1 as above. Two statesandy in G-coalgebras
v: X - GX andd : Y — GY, respectively, are--trace equivalenif

T3 (x) = T5'(y)-

(Although we use an element-based formulation for reaitghihis definition clearly
does make sense over arbitrary complete base categories.)

Of course, one shows by induction ovethat
A = (™Y ay foralln < w. (1)

We first note that the trace sequence factors through thal inilsegment of the terminal
sequence. Recall from Sectidn 2 tha¥aoalgebray induces a conéy,,) into the final
sequence.

Lemma 2. Leta : G — M be a trace semantics f@r, and define natural transforma-
tionsa,, : G" — M for n < w recursively byny = n anday,+1 = paGay,. If yis a
G-coalgebra, then

My = v, foralln < w

forall n € w.
Proof. Induction onn.

n = 0: We haveM!v(©) = M!n = n! = ago.
n — n+ 1: We have

An4+1Yn+1

= paG (o) Gyny (Definitions ofy,, 11, apr1)
= paG (M5 ™)y (Inductive hypothesis)

= uM (M5 ™)ary (Naturality ofc)

= M\uM~™ ary (Naturality of i)

= MI(Y™) oy

= My(+D @).

Corollary 3. Finite-depth behaviourally equivalent states ard¢race equivalent.

Remark 4. In most items of related work, stronger assumptions than \&akenhere
allow for identifying anobjectof traces in a suitable category, such as the Kleisli cate-
gory [8] or the Eilenberg-Moore categofy |11,4] of a monaattforms part of the type
functor. In our setting, a similar endeavour boils down tarelcterizing, possibly by
means of a limit of a suitable diagram, thasdrace sequences that akerealizable

i.e. induced by a state in sonigcoalgebra. We do not currently have a general answer
for this but point out that in a variant of the special casated in the beginning of the
section where we také to beP* (X x _), with P* denoting nonempty powerset, and
M = P(X* x _)), the set ofG-realizable traces is the limit of the infinite diagram

M1 M1 M1
1 P(R) P(R)

whereR denotes the immediate prefix relatidh= {(u,ua) | v € X*,a € X} with
projectionsmy, mo : R — X*. We expect that this description generalizes to cases
whereGG andM have the forni"F andT F*, respectively, wher& is a monad and™

is the free monad over the functbr, possibly under additional assumptions. In the case
at hand, the limit of the diagram is the set of all subsétsf X* x 1 = X* that are
prefix-closed anéxtensiblen the sense that for every € A there exists: € X' such
thatua € A.

4 Examples

We show that various process equivalences are subsumedantideEe equivalence.

Finite-depth behavioural equivalence One pleasant aspect aftrace equivalence is
that it spans, at least for finitely branching systems, thigeelength of the linear-time-
branching-time spectrum, in the sense that even (finitéhdéghavioural equivalence
coincides witha-trace equivalence for a suitabde This is conveniently formulated
using the following terminology.

Definition 5. We say that an endofunctét on a category with a terminal objettis
non-emptyf G1 has a global element.

Non-emptyness of an endofunctor entails that the comparfenf, at 1 are sections
whereq,, is as in Lemma&l2.

Lemma 6. If G is non-empty and generates an algebraically-free maGadvith uni-
versal arrowa, then(a,,); (the component af,, at the terminal object) is a section for
everyn < w.

Proof. For each seX, G* X is the initial G + X -algebra, with structure map
[pa,n] : GG*X + X - G*X

wherey andn are the multiplication and unit @&* [3]. By Lambek’s lemma, it follows
that[u«, n] is an isomorphism. Since both summands of the copro@d£tl + 1 are
nonempty (forGG*1, this follows from non-emptyness @f: we obtain a global ele-
ment of GG*1 by postcomposing a global element®f with Gn; : G1 — GG*1), the
coproduct injections are sections, so we obtain thatandy are sections, each being
the composite of a section with an isomorphism. Using (Xplibws by induction that
a,, IS a section for each < w. O

(Notice thatG is non-empty as soon as a6yX has a global element; if the base cate-
gory isSet, then every functor is non-empty except the constant furfotd).)

Proposition 7. If G is non-empty and generates an algebraically-free monadwia
G — G*, thena-trace equivalence coincides withtbehavioural equivalence.

Proof. Immediate from Lemmadg 2 afdl 6 O

Labelled Transition Systems (LTS) We provide some additional details for our ini-
tial example: We have&ZX = P(X x X) andMX = P(X* x X), with « the
obvious inclusion. The monadl/ arises fromG, as we will see later again ifl(2),
from a distributive lawdx : X x P(X) — P(X x X) which maps a pai(a, S)

to {a} x S. Explicitly, the unit of M is given byn(z) = {(e,)}, and the multiplication
by () = {(wv,z) | I(u,S) € A. (v,x2) € S} forA € P(X* x P(X* x X)). For
eachn and each statein an LTSy : X — P(X x X),v™)(x) consists of the pretraces
of z of length exactlyn, i.e.

A (@) = {(uy) | & % y,u € 5}

where denotes the usual extension of the transition relation twwe € X*. Thus,
My (z) consists of the traces of of lengthn, i.e. MIy™ (z) = {(u,) | z >

,u € X"} (where, as usualy = denotesdy.x =). Thus, states: andy are a-
trace equivalent iff they are trace equivalent in the useass, i.e. ifffu € ¥* | z 5

} = {u € £* | y 3}. The entire scenario transfers verbatim to the case of imite
branching LTS, withG = P, (X x _) andM = P.,(X* x _), whereP.,, denotes
finite powerset.

LTS with explicit termination The leading example treated in related work on coal-
gebraic trace semantics([8]11,4] is a variant of LTS withliekgermination, described
as coalgebras for the functor

Pl+Xx_)=2xP.

A state in an LTS with explicit termination can be seen as a@eterministic automa-
ton; this suggests that one might expect the traces of sutdteate be the words ac-
cepted by the corresponding automaton, and this in factttires taken in previous

work [8/11,4]; for the sake of distinction, let us call thizm of trace semantidan-
guage semantic$Staring at the problem for a moment reveals that languageuistcs
does not fit directly into our framework: Basically, our défom of trace sequence as-
sembles the traces via successive iteration of the coalggthrcture, and remembers
the traces reached in each iteration step. Contrastirsglguage semantics will drop a
word from the trace set if it turns out that upon complete afea of the word, no ac-
cepting state is reached —dntrace semantics, on the other hand, we will have recorded
prefixes of the word on the way, and our incremental approaels dot foresee forget-
ting these prefixes. See Sectidn 5 for a discussion of hdawace sequences can be
further quotiented to obtain language semantics.

Indeed one might contend that a more natural trace semanitiag LTS with
explicit termination will distinguish two types of tracetsiose induced by the plain
LTS structure, disregarding acceptance, and those th@tauddly end up in accepting
states; this is related to the trace semantics of CSP [10¢hadistinguishes deadlock
from successful terminatiori. Such a semantics is generated by our framework as fol-
lows. As the global monad, we takef X = P(X* x (X + 1)) (where we regard(
andl = {v'} as subsets ok + 1), with n(z) = {(e, z)} and

F5(S) = {(uv,b) | I(u,z) € SN (Z* x X). (v,0) € f(z)}U(SN(Z* x 1))

for f: X — MY andS € MY. This is exactly the monad induced by the distributive
lawAx : 1+ X xP(X) - P(1+ X x X)with Ax (V') = {v}andAx(a,S) = axSas
used by Hasuo et al.[[8]. We emb®d1 + X' x _) into M by the natural transformation
« given by

ax () ={(e,v) | v € StU{(a,2) | (a,z) € S}

(implicitly converting letters into words in the secondafrhenM 1 = P(X*)% where
the first components records accepted words and the secomaboent non-blocked
words; in a-trace sequences, the first component is always containéteisecond
one, and increases monotonically over the sequence aséfi Ktar as defined above
always keeps traces that are already accepted. Two stateg@ce equivalent iff they
generate the same traces and the same accepted tracessengbaliscussed above.

All this is not to say that our framework does not cover theglaage semantics of
non-deterministic automata. Note that we can impose @.lthat a non-deterministic
automaton never blocks an input letter — if a state fails teefana-successor, just add
ana-transition into a non-accepting state that loops on alliifgtters and has no tran-
sitions into other states; this clearly leaves the languddke automaton unchanged.
This restriction amounts to considering coalgebras fosth#unctor

G =2x (P*)*

of the functorP(1 + X x _) modelling LTS with explicit termination, wher* de-
notes non-empty powerset. We embed this functor into theesaomad)M as above,
by restrictinga: : P(1 + X x _) — M to G. Calling G-coalgebrason-blocking
non-deterministic automatave now have thatwo states in a non-blocking non-
deterministic automaton are-trace equivalent iff they accept the same langu&ge
a coalgebray : X — GX, the maps)(™) : X — M1, of course, still record accepted

traces as well as plain traces, but the plain traces no lacagey any information: all
a-trace sequences have the foff,, X"), <. (with L,, C X* recording the accepted
words of length at most).

Probabilistic Transition Systems Recall thagenerative probabilistic (transition) sys-
tems(for simplicity without the possibility of deadlock, not be confused with explicit
termination) are modelled as coalgebras for the furltor' x _) whereD denotes the
discrete distribution functor (i.eD(X) is the set of discrete probability distributions
on X, andD(f) takes image measures undgr That is, each state has a probability
distribution over pairs of actions and successor stateseMieedD(Y' x _) into the
global monad\/ X = D(X* x _) via the natural transformatianthat takes a discrete
distributiony on X x X to the discrete distribution o* x X that behaves like on

XY} x X (where we seé” as a subset oL'*) and is0 outsideX’ x X. The unity of M
mapse € X to the Dirac distribution afe, z), and forf : X — MY,

Py = 3 p2)f(@)w,y)

u=vw,r€X

forall p € MX, (u,y) € ¥* x Y. This is the monad induced by the canonical dis-
tributive law [E])\ : ¥ x D — D(X x _) given byAx (a, u) = 6(a) * whered forms
Dirac measures andis product measure. We identify/ 1 with D(X*). Given these
data, observe thatfor: X — D(X x X) andz € X, each distribution/!v(" (z) is
concentrated at traces of length

Assume from now on thak' is finite. Recall that the usual-algebra on the set
X« of infinite words overX' is generated by theonesi.e. the sets = {vw | w €
X}, v € X*, which (by finiteness ofY) form a semiring of sets. We let states
in a coalgebray : X — D(X x X) inducedistributionsyu, on X via the Hahn-
Kolmogorov theorem, defining a contentv?) inductively by

pa (1) =1
polart) = 3 (a0 (o)
z'eX

— a compactness argument, again hinging on finiteness, shows that no cone be
written as a countably infinite disjoint union of conessis in fact a pre-measure, i.e.
o-additive.

We note explicitly

Proposition 8. States in generative probabilistic systems over a finitbalet’. are
a-trace equivalent iff they induce the same distribution’en

Proof. Forv a word of lengthn andx a state in a generative probabilistic system, we
have

pa(v1) = (My"™ () (v).

5 Relation to Other Frameworks

Kleisli Liftings Hasuo et al.[[B] treat the case where the type funGtdras the form
TF for a monadl’ and a finitary endofunctaf’ on sets. They require thét lifts to a
functor F on the Kleisli category of’, which is equivalent to having a (functor-over-
monad) distributive law

A FT = TF.

They impose further conditions that include a cppo strictum the hom-sets of the
Kleisli categoryKI(T") of T' and ensure that

— T{is asingleton, so thdkis a terminal object ifkI(T") (unique Kleisli morphisms
into @ of course beingL); and

— the final sequence af coincides on objects with the initial sequencefafand
converges to the findl-coalgebra inu steps.

The trace semantics of &F'-coalgebra is then defined as the unique Kleisli morphism
into the final F-coalgebra; in keeping with distinguishing terminologyedsn Sec-
tion[4, we refer to this as language semantics. Thus, twesstatal F'-coalgebra are
language equivalent.e. trace equivalent in the sense of Hasuo et al., iff they 1o

the same values in the final sequenceFotinder the cones induced by the respec-
tive coalgebras. Explicitly: the underlying sets of the finaquence off' have the
form TF™), n < w, and given a coalgebra : X — TFX, the canonical cone
(An : X = TF"0), <, is defined recursively by, = L and

" rrx 2O pprEng I prpetig A p ety

'771-&—1 = X
Now the distributive law\ induces a monad structure on the functor
M =TF*, (2)

whereF’* denotes the (algebraically-)free monad Br{cf. Sectior #), and we have a
natural transformation. : TF' — M, so that the situation fits our current framework.
The setsI' F X embed intal/ X, so that the objects in the final sequencd afan be
seen as living inV/0. The definition ofy,,; is then seen to be just an explicit form of
Kleisli composition in)M ; that is, we can, for purposes of language equivalencegcepl
the#,, with mapsy,, : X — MO0 defined recursively by

FYo=1 Any1=Fpay

where the Kleisli star is that af/. Comparing with[{(IL), we see that the only difference
with the definition ofy(") is in the base of the recursiont®) = nx . Noting moreover
that

1*Mlnxy = 1"l = 11= 1,

we obtain
Fn = L* MM,

(Kissig and Kurz[[18] use a very similar definition in a morengeal setting that in
particular, for non-commutativ€, does not restrici’d to be a singleton, and instead

assume some distinguished elemert T'(). They then puf, = \z. e¢; the comparison
with our framework is then entirely analogous.)

Summing upJanguage equivalence is induced frartrace equivalence by post-
composingx-trace sequences with* : M1 — MO. Intuitively, this means that any
information tied to poststates in a pretrace is erased iguage equivalence, as op-
posed to just forgetting the poststate itselhirtrace equivalence. An example of this
phenomenon are LTS with explicit termination as discusse8ectiorl #. Moreover,
this observation elucidates why language equivalencerbesdrivial in cases without
explicit termination, such as standard LTS: here, all tsa@ee tied to poststates and
hence are erased when postcomposing with (This is also easily seen directly [8]:
without explicit termination, e.gf' = X' x _, one typically hag’() = () so that the final
F-coalgebra is trivial in the Kleisli category af.)

Eilenberg-Moore Liftings An alternative route to final objects for trace semantics
was first suggested by the generalized powerset constnuatiilva et al. [16] and
explicitly formulated in [4] (see also Jacobs et al.l[11] whihis is compared to the
semantics given by Kleisli liftings). In this approach omasiders liftings of functors to
Eilenberg-Moore categories in lieu of Kleisli categori€be setup applies to functors
of the formG = F'T whereF is an endofunctor andl is a monad on a base categ@y
It is based on assuming a finBlcoalgebraZ and a (functor-over-monad) distributive
law

p:TF — FT.

Under these assumptions, lifts to an endofunctof on the Eilenberg-Moore cate-
gory CT of T, and the free-algebra funct@ — CT7 lifts to a functorD from F'T-
coalgebras td"-coalgebras, which can be seen as a generalized powersgtumion.
Explicitly, D(y) = Fu%k prxT~fory: X — FT X, whereu” denotes the multiplica-
tion of T'. In other wordsD () : TX — FTX is the uniqué’-algebra morphism with
D(v) -n%k = . Moreover,F' has a final coalgebra with carrigr. The extension se-
mantics(i.e. trace semantics obtained via the powerset extensfa) I'T-coalgebra
v : X — FTX is then obtained by first applying to ~, obtaining aF-coalgebra with
carrierT X and hence &'-coalgebra maf’X — Z, and finally precomposing with
n% : X — TX wheren™ denotes the unit df.

In order to compare this with our framework, in which we cuathg consider only
finite iterates of the given coalgebra, we need to assumé tieghavioural equivalence
coincides with finite-depth behavioural equivalence; thigensured e.g. by assuming
that I is a finitary endofunctor oBet. In this case, two states have the same extension
semantics iff they induce the same values in the dirsteps of the final sequence bf
whose carriers coincide with the final sequencé’ofCombining the definition oD~y
for a coalgebray : X — F'T X with the usual construction of the canonical cone for
D~, which we denote by, : TX — F™1 for distinction from the canonical cone of
in the final sequence dfT', we obtain thaty,, is recursively defined by

Yo = !TX TX -1
Yni1 = Fy.TypFu’.

10

Now let us also assume thitis a finitary monad oSet. ThenSet” is a locally finitely
presentable category, and since the forgetful functSetareates filtered colimits, we
see that the lifting?' is finitary onSet”. Hence freef™-algebras exists, which implies
that we have the adjunction on the right below

Set, T 'Set! _ T "AlgF,

and the adjunction on the left is the canonical one. We défine be the monad of the
composed adjunction; it assigns to a Xethe underlying sef*T'X of a freeF-algebra
on the freel-algebral’ X ; hereF™* denotes the free monad éh(notice that this is not
in general a lifing of the free monad d@to Set”). Intuitively, M is defined by forming
the disjoint union of the algebraic theories associatéd amd 7, respectively, and then
imposing the distributive law between the operation¥'@nd F' embodied by. In the
following we shall denote the unit and multiplication Bf by 7 and /i, respectively.
We also writepx : FF*X — F*X for the structures of the freé—algebras and note
that these yield a natural transformatién

Now denote by: : F' — E* the universal natural transformation into the free
monad:; it is easy to see that= ¢ - 7). Then it follows thatx = 47 yields a natural
transformation fron¥T' to M (on Set). Let us further recall that there exist canonical
natural transformations” : £ — F* defined inductively by

3= (Id—"sF*) and gl = (Bt = pEn D0 e P ey,

We can assume w.l.0.g. thAtpreserves monos (hence, so déesince monos it$et”
are precisely injectivé’-algebra homomorphisms) and that coproduct injections are
monic inSet”. Then an easy induction shows that e are monic, too. (One uses
that[f), ¢| : Id + FF* = F*)) This implies that for testing equivalence in the extensio
semantics we can replagg with

Ap = BT - An : TX — F*1.
We are now ready to state the semantic comparison result:

Theorem 9. Let I be a finitary endofunctor, and &t be a finitary monad, both det.
Furtherletp : TF — FT be afunctor-over-monad distributive law. Then two states i
FT-coalgebras are equivalent under the extension semartifsrio : F'T — M as
given above, thein-trace sequences are identified under componentwise poptusi-
tion with £*!1,. That is, in the above notation,

A - = F¥lpy - My 4™, 3)

Proof. We first recall how the Kleisli extensiofi— f* for the monadV/ is obtained.
Given f : X — MY one first extends this to the uniqialgebra morphisny® :

TX — MY with f#. 9% = £ (i.e. one applies the Kleisli extensiond). Then one
obtainsf* : MX = F*TX — F*TY = MY as the uniqué'-algebra morphism with
f* - frx = f*. Notice that in this notation we have(y) = ~* and that the inductive
step of the definition of,, can be written as,,,1 = 7y, - 7! : TX — F"1. Observe

11

further that, since),,, !, and M! areT-algebra homomorphism§] (3) is equivalent
to

We now provel(B) by induction on. For the base case= 0 we have:

F*lpy - My 40 = F*lpy - F*Tlx -l M = F*T and def. ofy(®
:F*!T1~F*Tlx-ﬁTx-’l7§ sincenM:ﬁT-nT
=i - Tlx -k naturality of7)
=M -lrx Nk uniqueness ofy x
=69 50 - n% def. of 3° and#,
=40 n% def. of 4.

For the induction step we compute:

F*!Tl . M!X ~’7(n+1)

= F¥lpy - F*Tlx - (v™)* - ax -y M = F*T and def. ofy("+1)
:F*!Tl-F*T!X'(’Y(n))*'@X'FﬁTX"y def. ofa
= ¢y - FF*lpy - FE*T\x - F(y™)* . Piipx -4 F-algebra morphisms
=@y - FE* gy - FE*Tlx - F(yM)E .y def. of (—)*
= @1 Fin -y induction hypothesi§{4)
=@ - FB? . F,—Yn oy def. of4™
= Bt F, -y def. of g7 t!
g+l ., oyt gL (—)* Kleisli extension
= At 30 0k def. of ¥, 1
= Ynt1 Nk def. of 4, 41. 0

In the base example in work on extension semanticsl [11,4], dhse of non-
deterministic automata understood as coalgebras of the for X — 2 x P(X)¥,
the situation is as follows. The extension semantics [#f1, Section 5.1] yields a map
tr: X — P(X*) that maps each staiec X to the language accepted by the automa-
ton with starting state:.

To understand the above theorem in terms of this concreta@eawe fix X =
2x X* andT' X = P, (X) (to ensure finitarity). Understood as an algebraic sigeatur
F can be represented by twg-ary function symboly andn. The monad\/ = F*T
has these operations and thosg/of,, i.e. the join semilattice operations, which we
write using set notation; the distributive lanallows us to distribute joins ovegrandn,
favouringy overn to reflect the acceptance condition of (existential) notegheinistic
automata. The trace semanties : FTX — MX embeds flat terms, i.e. terms of
the formy((Uy,)aex) Or n((Ug)aex) € FTX (with U, € P(X)), into general (non-
flat) terms. Every step in the construction¢f(c) puts a flat term on top of terms
constructed in the previous step, and then distribitesperations (joins) over their
arguments as indicated. Therefore, the tefiftd(c) are terms of uniform depth in the
F-operations over sets of variables, i.e. they are elemdni$'@'C. For the alphabet
Y = {0, 1}, a typical component of the trace sequefit¥c), i.e. M!x~v™(c) for

12

somen can be visualised as a tree like the one on the left:
y y
NG N
n y n y

This tree conveys the information that the empty wem@hd the wordl lead to final
states (i.e. are accepted in the sense of language semaatidsadditionally tha00
and11 are not blocked; generally, thetrace sequence records at each stage which
words are accepted and additionally which words can be ¢sdauithout deadlock.
The tree on the right is then obtained by applyifitj1. This erases the information
on non-blocked words, so that only the information thahd1 are accepted remains;
this yields the extension semantics|[11,4], i.e. languageastics of the automaton,
as formally stated in Theorel 9. As noted already in Secfloif we move to non-
blocking non-deterministic automata, thertrace equivalence coincides directly with
language equivalence — note that in this cd5e&s non-empty powerset, so that, is a
bijection, i.e. postcomposing thetrace sequence with*!; does not lose informa-
tion. Informally, this is clear as non-acceptance of wonaks t deadlock never happens
in a non-blocking nondeterministic automaton.

0 0

Fixpoint Definitions Trace semantics, and associated linear-time logics, soecah-
sidered in[[5]. The framework consideredap.cit. is similar to that of[[8] in that it
applies to systems of typ€ — T'F'X whereT is a monad (that describes the branch-
ing) andF" a polynomial endofunctor (modelling the traces). The mdhasl required

to be commutative and partially additive, thus inducing dipbadditive semiring struc-
ture onT'1. In the examples of interest, one recovers the mdhas induced by this
semiring structure.

Given a systen{X, f : X — TFX), trace semantics then arises a8 &avalued
relationR : X x Z — T1 whereZ = vF is the final coalgebra of the functdr
defining traces. For this to be well-defined, one additignafjuires that the semiring
T'1 has suprema of chains, with order defined in the standard way.

The crucial difference to our approach is that trace serosunti defineccoinduc-
tively on theinfinite unfoldingof the functorF' defining the shape of traces, whereas
our definition isinductiveand based ofinite unfoldings

The difference becomes apparent when looking at exampbesalbelled transition
systemsX — P(A x X), the trace semantics op.cit.is a functionX — P(A") that
mapsz to the set of maximal traces, and two states are trace equiviilthey have
the same set affinite traces. This contrasts with our treatment where equivatates
have the sam#fnite traces. Similarly, for generative probabilistic systeires,systems
of shapeX — D(A x X) whereD is the discrete distributions functawp.cit. the
trace semantics obtained ap.cit. associates probabilities to maximal (infinite) traces

13

whereas our treatment is centered around probabilitiesibé fprefixes. In summary,
the main conceptual difference betwekh [5] and our appr@atirat between infinite
and finite traces. Technically, this difference is manifieshe coinductive definition of
op.cit.whereas our approach defines traces inductively.

6 Conclusions

One of the main important aspects of the general theory dfiebea is a uniform theory
of strong bisimulation. In coalgebraic terms, strong bidation is a simple concept,
readily defined, supports a rich theory and instantiatefiéontatural and known no-
tions for concretely given transition types. Instead oéstablishing facts about strong
bisimulation on a case-by-case basis, separately for gaehof transition system, the
coalgebraic approach provides a general theory of whicbifspeesults for concretely
given systems are mere instances: a coalgebraic success sto

The question about whether a similar success story for #goe/alence can also
be told in a coalgebraic setting has been the subject of musgrapers (discussed in
the previous section in detail) but has so far not receivestiafactory answer.

One of the reasons why trace semantics has so far been a msikealoncept is the
fact that — even for concretely given systems such as labatasition systems with
explicit termination — there are many, equally naturalyfalations of trace equivalence.
This suggests that trace equivalence, by its very naturatabe captured by one
general definition, but needs an additional parameter thiates the precise nature of
traces one wants to capture.

In contrast to other approaches in the literature, we adcéamthis fact by
parametrising trace semantics by an embedding of a funittat defines the coalge-
braic type of system under consideration) into a monad éthaw/s us to sequence tran-
sitions). As a consequence, our definition is more flexilhel, subsumes existing no-
tions. Conceptually speaking, this manifests itself infiat that other approaches im-
pose various technical conditions like order enrichmemiastial additivity of a monad
that are geared towards capturing@ecificnotion of trace equivalence, whereas our
definition is parametrised to capture the entire range ofitlear-time branching-time
spectrum. This is evidenced by Proposifidn 7 that showgévain) strong bisimulation
is a specific instance of our parameterised definition.

Technically, we have presented a simplified notion of a s¢icgnf finite traces
for coalgebras. This novel account allows us to deal with agamples and subsumes
previous proposals of a semantics of finite traces. Impogamts for future work
include a generalisation to behavioural preorders, as aglhppropriate logics that
characterise these preorders and ensuing equivalences.

References

1. L. Aceto, A. Ingolfsdottir, K. Larsen, and J. SriReactive systems: modelling, specification
and verification Cambridge University Press, 2007.

2. P. Aczel.Non-Well-Founded Set€SLlI, Stanford, 1988.

3. M. Barr. Coequalizers and free triplddath. Zeitschr. 116:307-322, 1970.

14

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

M. M. Bonsangue, S. Milius, and A. Silva. Sound and congpéetiomatizations of coalge-
braic language equivalencACM Trans. Comput. Log14(1:7), 2013.

. C. Cirstea. A coalgebraic approach to linear-time legio Foundations of Software Science

and Computation Structures, FoSSaCS 20ial. 8412 ofLNCS pp. 426—-440. Springer,
2014.

. V. Giarratana, F. Gimona, and U. Montanari. Observahddncepts in abstract data type

specifications. IMathematical Foundations of Computer Science, MFCS 1936 45 of
LNCS pp. 576-587. Springer, 1976.

. J. Goguen and J. Thatcher. Initial algebra semanticsSwitching and Automata Theory,

SWAT (FOCS) 1974p. 63—-77. IEEE Computer Society, 1974.

. l.Hasuo, B. Jacobs, and A. Sokolova. Generic trace sérsafié coinductionLog. Methods

Comput. Scj.3, 2007.

. R. Hennicker and M. Wirsing. Observational SpecificatidiBirkhoff Theorem. InWork-

shop on Theory and Applications of Abstract Data Types, WA®ZBb, Selected Papersp.
119-135. Springer, 1985.

A. Hoare.Communicating sequential process&sentice Hall, 1985.

B. Jacobs, A. Silva, and A. Sokolova. Trace semanticg&iarminization. IrCoalgebraic
Methods in Computer Science, CMCS 201@l. 7399 of LNCS pp. 109-129. Springer,
2012.

M. Kelly. A unified treatment of transfinite constructsofor free algebras, free monoids,
colimits, associated sheaves, and soBull. Austral. Math. So¢.22:1-83, 1980.

C. Kissig and A. Kurz. Generic trace logics. arXiv prepfi103.3239, 2011.

J. Power and D. Turi. A coalgebraic foundation for lintsare semantics. Ii€oalgebraic
Methods in Computer Science, CMCS 1989. 29 of ENTCS pp. 259-274. Elsevier, 1999.
H. Reichel. Behavioural equivalence a unifying condepinitial and final specification
methods. IrMath. Models in Comp. Systems, Proc. 3rd Hungarian Comp.GRgiference
pp. 27-39, 1981.

A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Geizrénglthe powerset construction,
coalgebraically. In K. Lodaya and M. Mahajan, ed®c. IARCS Annual Conference on
Foundations of Software Technology and Theoretical Coerp8tience (FSTTCS 2010)
vol. 8 of Leibniz International Proceedings in Informatics (LIPJcpp. 272—-283, 2010.

A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M. Rutt@eneralizing determinization
from automata to coalgebrasog. Methods Comput. S&(1:9), 2013.

D. Turiand G. Plotkin. Towards a mathematical operatisemantics. Ithogic in Computer
Science, LICS 1997p. 280-291, 1997.

R. van Glabbeek. The linear time-branching time spet{extended abstract). [Fheories
of Concurrency: Unification and Extension, CONCUR 1,98f). 458 ofLNCS pp. 278-297.
Springer, 1990.

15

	Simplified Coalgebraic Trace Equivalence

