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Abstract. By the Road Coloring Theorem (Trahtman, 2008), the edges
of any given aperiodic directed multigraph with a constant out-degree can
be colored such that the resulting automaton admits a reset word. There
may also be a need for a particular reset word to be admitted. For certain
words it is NP-complete to decide whether there is a suitable coloring. For
the binary alphabet, we present a classification that separates such words
from those that make the problem solvable in polynomial time. The
classification differs if we consider only strongly connected multigraphs.
In this restricted setting the classification remains incomplete.
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1 Introduction

Questions about synchronization of finite automata have been studied since the
early times of automata theory. The basic concept is very natural: we want to
find an input sequence that would get a given machine to a unique state, no
matter in which state the machine was before. Such sequence is called a reset

word. If an automaton has a reset word, we call it a synchronizing automaton.
In the study of road coloring, synchronizing automata are created from di-

rected multigraphs through edge coloring. A directed multigraph is said to be
admissible, if it is aperiodic and has a constant out-degree. A multigraph needs
to be admissible in order to have a synchronizing coloring. Given an alphabet I
and an admissible graph with out-degrees |I|, the following questions arise:

1. Is there a coloring such that the resulting automaton has a reset word?
2. Given a number k ≥ 1, is there a coloring such that the resulting automaton

has a reset word of length at most k?
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3. Given a word w ∈ I⋆, is there a coloring such that w is a reset word of the
resulting automaton?

4. Given a set of words W ⊆ I⋆, is there a coloring such that some w ∈ W is a
reset word of the resulting automaton?

For the first question it was conjectured in 1977 by Adler, Goodwyn, and Weiss
[1] that the answer is always yes. The conjecture was known as the Road Coloring

Problem until Trahtman [5] in 2008 found a proof, turning the claim into the
Road Coloring Theorem.

The second question was initially studied in the paper [3] presented at LATA
2012, while the yet-unpublished papers [2] and [6] give closing results: The prob-
lem is NP-complete for any fixed k ≥ 4 and any fixed |I| ≥ 2. The instances
with k ≤ 3 or |I| = 1 can be solved by a polynomial-time algorithm.

The third question is the subject of the present paper. We show that the
problem becomes NP-complete even if restricted to |I| = 2 and w = abb or
to |I| = 2 and w = aba, which may seem surprising. Moreover, we provide a
complete classification of binary words: The NP-completeness holds for |I| = 2
and any w ∈ {a, b}⋆ that does not equal ak, bk, akb, nor bka for any k ≥ 1. On
the other hand, for any w that matches some of these patterns, the restricted
problem is solvable in polynomial time.

The fourth question was raised in [2] and it was emphasized that there are
no results about the problem. Our results about the third problem provide an
initial step for this direction of research.

It is an easy but important remark that the Road Coloring Theorem holds
generally if and only if it holds for strongly connected graphs. It may seem that
strong connectivity can be safely assumed even if dealing with other problems
related to road coloring. Surprisingly, we show that this does not hold for com-
plexity issues. If P is not equal to NP, the complexity of the third problem for
strongly connected graphs differs from the basic third problem in the case of
w = abb. However, for the strongly connected case we are not able to provide a
complete characterization as described above, we give only partial results.

Due to the page limit, some proofs are omitted or shortened. The results are
presented in Sections 3 and 4.

2 Preliminaries

2.1 Automata and Synchronization

For u,w ∈ I⋆ we say that u is a prefix, a suffix, or a factor of w if w = uv,
w = vu, or w = vuv′ for some v, v′ ∈ I⋆, respectively.

A deterministic finite automaton is a triple A = (Q, I, δ), where Q and I are
finite sets and δ is an arbitrary mapping Q × I → Q. Elements of Q are called
states, I is the alphabet. The transition function δ can be naturally extended to
Q× I⋆ → Q, still denoted by δ, slightly abusing the notation. We extend it also
by defining

δ(S,w) = {δ(s, w) | s ∈ S}
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for each S ⊆ Q and w ∈ I⋆. If A = (Q, I, δ) is fixed, we write r
x

−→ s instead of
δ (r, x) = s.

For a given automaton A = (Q, I, δ), we call w ∈ I⋆ a reset word if |δ(Q,w)| =
1. If such a word exists, we call the automaton synchronizing. Note that each
word having a reset word as a factor is also a reset word.

2.2 Road Coloring

In the rest of the paper we use the term graph for a directed multigraph. A
graph is:

1. aperiodic, if 1 is the only common divisor of all the lengths of cycles,
2. admissible, if it is aperiodic and all its out-degrees are equal,
3. road colorable, if its edges can be labeled such that a synchronized determin-

istic finite automaton arises.

Naturally, we identify a coloring of edges with a transition function δ of the re-
sulting automaton. It is not hard to observe that any road colorable graph is ad-
missible. In 1977 Adler, Goodwyn, and Weiss [1] conjectured that the backward
implication holds as well. Their question became known as the Road Coloring
Problem and a positive answer was given in 2008 by Trahtman [5].

For any alphabet I and w ∈ I⋆, by G
|I|
w we denote the set of graphs with all

out-degrees equal to |I| such that there exists a coloring δ with |δ(Q,w)| = 1. In
this paper we work with the following computational problem:

SRCW (Synchronizing road coloring with prescribed reset words)

Input: Alphabet I, graph G = (Q,E) with out-degrees |I|, W ⊆ I⋆

Output: Is there a w ∈ W such that G ∈ G
|I|
w ?

In this paper we study the restrictions to one-element sets W , which means

that we consider the complexity of the sets G
|I|
w themselves.

Restrictions are denoted by subscripts and superscripts: SRCWM
k,X denotes

SRCW restricted to inputs with |I| = k, W = X , and G ∈ M, where M is a
class of graphs. By SC we denote the class of strongly connected graphs. Having
a graph G = (Q,E) fixed, by dG(s, t) we denote the length of shortest directed
path from s ∈ Q to t ∈ Q in G. For each k ≥ 0 we denote

Vk(q) = {s ∈ Q | dG(s, q) = k} .

Having R ⊆ Q, let G[R] denote the induced subgraph of G on the vertex set R.
If a graph G has constant out-degree |I|, a vertex v ∈ Q is called a sink state if
there are |I| loops on v. By Z we denote the class of graphs having a sink state.
The following lemma can be easily proved by a reduction that adds a chain of
|u| new states to each state of a graph:

Lemma 1. Let |I| ≥ 1 and u,w ∈ {a, b}⋆. Then:

1. If SRCWk,{w} is NP-complete, so is SRCWk,{uw}.

2. If SRCWZ
k,{w} is NP-complete, so is SRCWZ

k,{uw}.
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3 A Complete Classification of Binary Words According

to Complexity of SRCW2,{w}

The theorem below presents one of the main results of the present paper. As-
suming that P does not equal NP, it introduces an exact dichotomy concerning
the words over binary alphabets. Let us fix the following partition of {a, b}⋆:

T1 =
{

ak, bk | k ≥ 0
}

,

T2 =
{

akb, bka | k ≥ 1
}

,

T3 =
{

albk, blak | k ≥ 2, l ≥ 1
}

,

T4 = {a, b}⋆ \ (T1 ∪ T2 ∪ T3) .

For the NP-completeness reductions throughout the present paper we use a
suitable variant of the satisfiability problem. The following can be verified using
the Schaefer’s dichotomy theorem [4]:

Lemma 2. It holds that W-SAT is NP-complete.

W-SAT

Input: Finite set X of variables, finite set Φ ⊆ X4 of clauses.

Output: Is there an assignment ξ : X → {0,1} such that for each
clause (z1, z2, z3, z4) ∈ Φ it holds that:
(1) ξ(zi) = 1 for some i,
(2) ξ(zi) = 0 for some i ∈ {1, 2},
(3) ξ(zi) = 0 for some i ∈ {3, 4}?

In this section we use reductions from W-SAT to prove the NP-completeness
of SRCW2,{w} for each w ∈ T3 and w ∈ T4. In the case of w ∈ T4 the reduction
produces only graphs having sink states. This shows that for w ∈ T4 the problem
SRCWZ

2,{w} is NP-complete as well, which turns out to be very useful in Section
4, where we deal with strongly connected graphs. For w ∈ T3 we also prove
NP-completeness, but we use automata without sink states. We show that the
cases with w ∈ T1 ∪ T2 are decidable in polynomial time.

In all the figures below we use bold solid arrows and bold dotted arrows for the
letters a and b respectively.

Theorem 3. Let w ∈ {a, b}⋆.

1. If w ∈ T1 ∪ T2, the problem SRCW2,{w} is solvable in polynomial time.

2. If w ∈ T3∪T4, the problem SRCW2,{w} is NP-complete. Moreover, if w ∈ T4,

the problem SRCWZ
2,{w} is NP-complete.

Proof for w ∈ T1. It is easy to see that G ∈ Gak if and only if there is q0 ∈ Q
such that there is a loop on q0 and for each s ∈ Q we have dG(s, q0) ≤ k. ⊓⊔
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Proof for w ∈ T2. For a fixed q0 ∈ Q, we denote Q1 = {s ∈ Q | s −→ q0} and

R = {s ∈ Q1 | H1 has a cycle reachable from s} ,

where H1 is obtained from G[Q1] by decreasing multiplicity by 1 for each edge
ending in q0. If q0 /∈ Q1, we have H1 = G[Q1]. Let us prove that G ∈ Gakb if
and only if there is q0 ∈ Q such that:

1. It holds that dG(s, q0) ≤ k + 1 for each s ∈ Q.
2. For each s ∈ Q there is a q ∈ R such that dG(s, q) ≤ k.

First, check the backward implication. For each r ∈ R, we color by b an edge of
the form r −→ q0 that does not appear in H1. Then we fix a forest of shortest
paths from all the vertices of Q\R into R. Due to the second condition above,
the branches have length at most k. We color by a the edges used in the forest.
We have completely specified a coloring of edges. Now, for any s ∈ Q a prefix aj

of akb takes us into R, the factor ak−j keeps us inside R, and with the letter b
we end up in q0.

As for the forward implication, the first condition is trivial. For the second
one, take any s ∈ Q and denote sj = δ

(

s, aj
)

for j ≥ 0. Clearly, sk ∈ Q1,
but we show also that sk ∈ R, so we can set q = sk in the last condition.
Indeed, whenever sj ∈ Q1 for j ≥ k, we remark that δ

(

sj−k+1, a
k
)

= q0 and
thus sj+1 ∈ Q1 as well. Since j can grow infinitely, there is a cycle within Q1

reachable from sk. ⊓⊔

Proof for w ∈ T3. Due to Lemma 1, it is enough to deal with w = abk for
each k ≥ 2. For a polynomial-time reduction from W-SAT, take an instance
X = {x1, . . . , xn}, Φ = {C1, . . . , Cm}, where Cj = (zj,1, zj,2, zj,3, zj,4) for each
j = 1, . . . ,m. We build the graph Gk,φ = (Q,E) defined by Fig. 1. Note that:

– In Fig. 1, states are represented by discs. For each j = 1, . . . ,m, the edges
outgoing from C′

i and C
′′

i represent the formula Φ by leading to the states
zj,1, zj,2, zj,3, zj,4 ∈ {x1, . . . , xn} ⊆ Q.

– In the case of k = 2 the state Vi,2 does not exist, so we set xi −→ D0 and
Vi,1 −→ D0 instead of xi −→ Vi,2 and Vi,1 −→ Vi,2.

We show that Gk,Φ ∈ Gabk if and only if there is an assignment ξ : X → {0,1}
satisfying the conditions given by Φ.

First, let there be a coloring δ of Gk,Φ such that
∣

∣δ
(

Q, abk
)∣

∣ = 1. Observe that

necessarily δ
(

Q, abk
)

= {D0}, while there is no loop on D0. We use this fact to
observe that whenever xi ∈ δ(Q, a), the edges outgoing from xi,Vi,1, . . . ,Vi,k−1

must be colored according to Fig. 2, but if xi ∈ δ(Q, ab), then they must be col-
ored according to Fig. 3. Let ξ(xi) = 1 if xi ∈ δ(Q, ab) and ξ(xi) = 0 otherwise.
Choose any j ∈ {1, . . . ,m} and observe that

ξ(δ(Cj , ab)) = 1, ξ
(

δ
(

C′
j , a

))

= 0, ξ
(

δ
(

C′′
j , a

))

= 0,

thus we can conclude that all the conditions from the definition of W-SAT hold
for the clause Cj .
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x1 V1,1

V1,2

V1,3

V1,k−2

V1,k−1

x2 V2,1

V2,2

V2,3

V2,k−2

V2,k−1

xn Vn,1

Vn,2

Vn,3

Vn,k−2

Vn,k−1

D0

D1 D2

z1,1 z1,2 z1,3 z1,4 z2,1 z2,2 z2,3 z2,4 zm,1 zm,2 zm,3 zm,4

C1 C2 Cm

C′

1
C′′

1
C′

2
C′′

2
C′

m C′′

m

Fig. 1. The graph Gk,Φ reducing W-SAT to SRCW|I|=2,W={abk} for k ≥ 2

D0

Fig. 2. A coloring corre-
sponding to ξ(xi) = 0

D0

Fig. 3. A coloring corre-
sponding to ξ(xi) = 1

D0

D1 D2

D0

D1 D2

Fig. 4. Colorings for k even
(top) and odd (bottom)
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On the other hand, let ξ be a satisfying assignment of Φ. For each j we color
the edges outgoing from Cj ,C

′
j ,C

′′
j such that the ab-path from Cj leads to the

zj,i with ξ(zj,i) = 1 and the a-paths from C′
j ,C

′′
j lead to the zj,i′ and zj,i′′ with

ξ(zj,i′) = 0, ξ(zj,i′′) = 0, where i′ ∈ {1, 2} , i′′ ∈ {3, 4}. For the edges outgoing
from xi,Vi,1, . . . ,Vi,k−1 we use Fig. 2 if ξ(xi) = 0 and Fig. 3 if ξ(xi) = 1. The
transitions within D0,D1,D2 are colored according to Fig. 4, depending on the
parity of k. Observe that for each i ∈ {1, . . . , n} we have xi /∈ δ(Q, ab) if ξ(xi) = 0

and xi /∈ δ(Q, a) if ξ(xi) = 1. Using this fact we check that δ(Q,w) = {D0}. ⊓⊔

Proof for w ∈ T4. Any w ∈ T4 can be written as w = vajbkal or w = vbjakbl for
j, k, l ≥ 1. Due to Lemma 1 it is enough to deal with w = abkal for each k, l ≥ 1.
Take an instance of W-SAT as above and construct the graph Gw,Φ = (Q,E)
defined by Fig. 5. Note that:

– In the case of l = 1, the state Zi,1 does not exist, so we set W′
i −→ D0 and

Vi,k−1 −→ D0 instead of W′
i −→ Zi,1 and Vi,k−1 −→ Zi,1.

– In the case of k = 1, the state Vi,1 does not exist, so we set xi −→ Zi,1 (or
xi −→ D0 if l = 1) and xi −→ Wi instead of xi ⇒ Vi,1.

z1,1 z1,2 z1,3 z1,4 z2,1 z2,2 z2,3 z2,4 zm,1 zm,2 zm,3 zm,4

C1 C2

D0

V1,1

x1

V1,k−1 W1

W′

1Z1,1

Z1,l−1

V2,1

x2

V2,k−1 W2

W′

2

Z2,l−1

Vn,1

xn

Vn,k−1

Zn,l−1

Wn

W′

nZ2,1 Zn,1

C′

1
C′′

1
C′

2
C′′

2

Cm

C′

m C′′

m

Fig. 5. The graph Gw,Φ reducing W-SAT to SRCWZ

|I|=2,W={abkal} for k, l ≥ 1
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Let there be a coloring δ of Gw,Φ such that |δ(Q,w)| = 1. Observe that δ(Q,w) =

{D0}. Next, observe that whenever xi ∈ δ(Q, a), then Vi,k−1
b

−→ Zi,1, but if

xi ∈ δ(Q, ab), then Vi,k−1
a

−→ Zi,1. Let ξ(xi) = 1 if xi ∈ δ(Q, ab) and ξ(xi) = 0

otherwise. We choose any j ∈ {1, . . . ,m} and conclude exactly as we did in the
case of T3.

On the other hand, let ξ be a satisfying assignment of Φ. For each j, we
color the edges outgoing from Cj ,C

′
j,C

′′
j as we did in the case of T3. For each i,

we put Vi,k−1
a

−→ Zi,1,Vi,k−1
b

−→ Wi if ξ(xi) = 1 and the reversed variant if
ξ(xi) = 0. ⊓⊔

4 A Partial Classification of Binary Words According to

Complexity of SRCW
SC
2,{w}

Clearly, for any w ∈ T1 ∪ T2 we have SRCWSC
2,{w} ∈ P. In Section 4.1 we show

that
SRCWSC

2,{abb} ∈ P,

which is a surprising result because the general SRCW2,{w} is NP-complete for
any w ∈ T3, including w = abb. We are not aware of any other words that witness
this difference between SRCWSC and SRCW.

In Section 4.2 we introduce a general method using sink devices that allows us
to prove the NP-completeness of SRCWSC

2,{w} for infinitely many words w ∈ T4,
including any w ∈ T4 with the first and last letter being the same. However, we
are not able to apply the method to each w ∈ T4.

4.1 A Polynomial-Time Case

A graph G = (Q,E) is said to be k-lifting if there exists q0 ∈ Q such that for
each s ∈ Q there is an edge leading from s into Vk(q0). Instead of 2-lifting we
just say lifting.

Lemma 4. If G is a k-lifting graph, then G ∈ Gabk .

Lemma 5. If G is strongly connected, G is not lifting, and G ∈ Gabb via δ and

q0, then δ has no b-transition ending in V2(q0) ∪ V3(q0). Moreover, V3(q0) = ∅.

Proof. First, suppose for a contradiction that some s ∈ V2(q0) ∪ V3(q0) has an
incoming b-transition. Together with its outgoing b-transition we have

r
b

−→ s
b

−→ t,

where s 6= q0 and t 6= q0. Due to the strong connectivity there is a shortest
path P from q0 to r (possibly of length 0 if r = q0). The path P is made of

b-transitions. Indeed, if there were some a-transitions, let r′
a

−→ r′′ be the last
one. The abb-path outgoing from r′ ends in δ(r′′, bb), which either lies on P or
in {s, t}, so it is different from q0 and we get a contradiction.
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It follows that δ(q0, b) 6= q0 and δ(q0, bb) 6= q0, so there cannot be any a-

transition incoming to q0. Hence for any s ∈ V1(q0) there is a transition s
b

−→ q0
and thus there is no a-transition ending in V1(q0). Because there is also no a-
transition ending in V3(q0), all the a-transitions end in V2(q0) and thus G is
lifting, which is a contradiction.

Second, we show that V3(q0) is empty. Suppose that s ∈ V3(q0). No a-
transition comes to s since there is no path of length 2 from s to q0. Thus,
s has no incoming transition, which contradicts the strong connectivity. ⊓⊔

Theorem 6. SRCWSC
2,{abb} is decidable in polynomial time.

Proof. As the input we have a strongly connected G = (Q,E). Suppose that q0
is fixed (we can just try each q0 ∈ Q) and so we should decide if there is some δ
with δ(Q, abb) = {q0}. First we do some preprocessing:

– If G is lifting, according to Lemma 4 we accept.
– If V3(q0) 6= ∅, according to Lemma 5 we reject.
– If there is a loop on q0, we accept, since due to V3(q0) = ∅ we have G ∈ Gbb.

If we are still not done, we try to find some labeling δ, assuming that none of
the three conditions above holds. We deduce two necessary properties of δ. First,
Lemma 5 says that we can safely label all the transitions ending in V2(q0) by
a. Second, we have q0 ∈ δ(Q, a). Indeed, otherwise all the transitions incoming
to q0 are labeled by b, and there cannot be any a-transition ending in V1(q0)
because we know that the b-transition outgoing from q0 is not a loop. Thus G is
lifting, which is a contradiction.

Let the sets B1, . . . , Bβ denote the connected components (not necessarily
strongly connected) of G[V1(q0)]. Note that maximum out-degree in G[V1(q0)] is
1. Let e = (r, s) , e′ = (s, t) be consecutive edges with s, t ∈ V1(q0) and r ∈ Q.
Then the labeling δ has to satisfy

e is labeled by a ⇔ e′ is labeled by b.

Indeed:

– The left-to-right implication follows easily from the fact that there is no loop
on q0.

– As for the other one, suppose for a contradiction that both e′, e are labeled
by b. We can always find a path P (possibly trivial) that starts outside V1(q0)
and ends in r. Let r be the last vertex on P that lies in δ(Q, a). Such vertex
exists because we have V2(q0) ∪ {q0} ⊆ δ(Q, a) and V3(q0) = ∅. Now we can
deduce that δ(r, bb) 6= q0, which is a contradiction.

It follows that for each Bi there are at most two possible colorings of its inner
edges (fix variant 0 and variant 1 arbitrarily). Moreover, a labeling of any edge
incoming to Bi enforces a particular variant for whole Bi.

Let the set A contain the vertices s ∈ V2(q0)∪{q0} whose outgoing transitions
lead both into V1(q0). Edges that start in vertices of (V2(q0) ∪ {q0}) \A have only
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one possible way of coloring due to Lemma 5, while for each vertex of A there are
two possibilities. Now any possible coloring can be described by |A|+β Boolean
propositions:

xs ≡ es is labeled by a

yB ≡ B is labeled according to variant 1

for each s ∈ A and B ∈ {B1, . . . , Bβ}, where es is a particular edge outgoing
from s. Moreover, the claim δ(Q, abb) = {q0} can be equivalently formulated as
a conjunction of implications of the form xs → yB , so we reduce the problem to
2-SAT. ⊓⊔

4.2 NP-Complete Cases

We introduce a method based on sink devices to prove the NP-completeness for
a wide class of words even under the restriction to strongly connected graphs.

In the proofs below we use the notion of a partial finite automaton (PFA),
which can be defined as a triple P = (Q, I, δ), where Q is a finite set of states, I
is a finite alphabet, and δ is a partial function Q×I → Q which can be naturally
extended to Q× I⋆ → Q. Again, we write r

x
−→ s instead of δ (r, x) = s. We say

that a PFA is incomplete if there is some undefined value of δ. A sink state in a
PFA has a defined loop for each letter.

Definition 7. Let w ∈ {a, b}⋆. We say that a PFA B = (Q, {a, b} , δ) is a sink
device for w, if there exists q0 ∈ Q such that:

1. δ(q0, u) = q0 for each prefix u of w,

2. δ(s, w) = q0 for each s ∈ Q.

Note that the trivial automaton consisting of a single sink state is a sink device
for any w ∈ {a, b}⋆. However, we are interested in strongly connected sink devices
that are incomplete. In Lemma 8 we show how to prove the NP-completeness
using a non-specific sink device in the general case of w ∈ T4 and after that we
construct explicit sink devices for a wide class of words from T4.

Lemma 8. Let w ∈ T4 and assume that there exists a strongly connected in-

complete sink device B for w. Then SRCWSC
2,{w} is NP-complete.

Proof. We assume that w starts by a and write w = aαbβau for α, β ≥ 1 and
u ∈ {a, b}⋆. Denote B = (QB, {a, b} , δB). For a reduction from W-SAT, take an
instance X,Φ with the notation used before, assuming that each x ∈ X occurs
in Φ. We construct a graph Gw,Φ =

(

Q,E
)

as follows. Let q1 ∈ QB have an
undefined outgoing transition, and let B′ be an automaton obtained from B by
arbitrarily defining all the undefined transitions except for one transition outgo-
ing from q1. Let GB′ be the underlying graph of B′. By Theorem 3, SRCWZ

2,{w}

is NP-complete, so it admits a reduction from W-SAT. Let Gw,Φ = (Q,E) be
the graph obtained from such reduction, removing the loop on the sink state
q′0 ∈ Q. Let s1, . . . , s|Q|−1 be an enumeration of all the states of Gw,Φ different
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q1

Gw,Φ

F2,1

F|Q|,βF|Q|,β−1F|Q|,1

F1,βF1,β−1F1,1

F2,βF2,β−1F2,0

F|Q|,0

F1,0

s2

q0

GB′

s1

s|Q|−1

Fig. 6. The graph Gw,Φ

from q′0. Then we define Gw,Φ as shown in Fig. 6. We merge the state q′0 ∈ Q
with the state q0 ∈ QB, which is fixed by the definition of a sink device.

First, let there be a coloring δ of Gw,Φ such that
∣

∣δ
(

Q,w
)∣

∣ = 1. It follows

easily that δ, restricted to Q, encodes a coloring δ of Gw,Φ such that |δ(Q,w)| = 1.
The choice of Gw,Φ guarantees that there is a satisfying assignment ξ for Φ.

On the other hand, let ξ be a satisfying assignment of Φ. By the choice of
Gw,Φ, there is a coloring δ of Gw,Φ such that |δ(Q,w)| = 1. We use the following
coloring of Gw,Φ: The edges outgoing from s1, . . . , s|Q|−1 are colored according
to δ. The edges within GB′ are colored according to B′. The edge q1 −→ F1,0 is
colored by b. All the other edges incoming to the states F1,0, . . . ,F|Q|,0, together
with the edges of the form Fi,β −→ q0, are colored by a, while the remaining
ones are colored by b. ⊓⊔

For any w ∈ {a, b}⋆ we construct a strongly connected sink device D(w) =
(Qw, {a, b} , δw). However, for some words w ∈ T4 (e.g. for w = abab) the device
D(w) is not incomplete and thus is not suitable for the reduction above. Take
any w ∈ {a, b}⋆ and let CP

w,C
S
w,C

F
w be the sets of all prefixes, suffixes and factors

of w respectively, including the empty word ǫ. Let

Qw =
{

[u] | u ∈ C
F
w, v /∈ C

S
w for each nonempty prefix v of u

}

,

while the partial transition function δw consists of the following transitions:

1. [u]
x

−→ [ux] whenever [u] , [ux] ∈ Qw,

2. [u]
x

−→ [ǫ] whenever ux ∈ C
S
w,

3. [u]
x

−→ [ǫ] whenever [ux] /∈ Qw, ux /∈ C
S
w, and vx ∈ C

P
w for a suffix v of u.

Lemma 9. For any w ∈ {a, b}⋆, D(w) is a strongly connected sink device.

Lemma 10. Suppose that w ∈ {a, b}⋆ starts by x, where {x, y} = {a, b}. If there

is u ∈ {a, b}⋆ satisfying all the following conditions, then D(w) is incomplete:
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1. [u] ∈ Qw,
2. uy /∈ C

F
w,

3. for each nonempty suffix v of uy, v /∈ C
P
w.

Theorem 11. If a word w ∈ T4 satisfies some of the following conditions, then

SRCWSC
2,{w} is NP-complete:

1. w is of the form w = xwx for w ∈ {a, b}⋆ , x ∈ {a, b},
2. w is of the form w = xwy for w ∈ {a, b}⋆ , x, y ∈ {a, b} , x 6= y,

and xkylx ∈ C
F
w, x

k+1 /∈ C
F
w, y

l+1 /∈ C
F
w for some k, l ≥ 1.

Proof. Due to Lemmas 8 and 9, it is enough to show that D(w) is incomplete. Let
m ≥ 1 be the largest integer such that ym is a factor of w. It is straightforward
to check that u = ym (in the first case) or u = xkyl (in the second case) satisfies
the three conditions from Lemma 10.

5 Conclusion and Future Work

We have completely characterized the binary words w that make the computa-
tion of road coloring NP-complete if some of them is required to be the reset
word for a coloring of a given graph. Except for w = akb and w = ak with k ≥ 1,
each w ∈ {a, b}⋆ has this property. We have proved that if we require strong
connectivity, the case w = abb becomes solvable in polynomial time. For any w
such that the first letter equals to the last one and both a, b occur in w, we have
proved that the NP-completeness holds even under this requirement. The main
goals of the future research are:

– Complete the classification of binary words in the strongly connected case.
– Give the classifications of words over non-binary alphabets.
– Study SRCW restricted to non-singleton sets of words.
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