Abstract
We study the orthogonal range searching problem on points that have a significant number of geometric repetitions, that is, subsets of points that are identical under translation. Such repetitions occur in scenarios such as image compression, GIS applications and in compactly representing sparse matrices and web graphs. Our contribution is twofold. First, we show how to compress geometric repetitions that may appear in standard range searching data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees), and how to implement subsequent range queries on the compressed representation with only a constant factor overhead. Secondly, we present a compression scheme that efficiently identifies geometric repetitions in point sets, and produces a hierarchical clustering of the point sets, which combined with the first result leads to a compressed representation that supports range searching.
Supported by a grant from the Danish National Advanced Technology Foundation.
P. Bille and I.L. Gørtz—Supported by a grant from the Danish Council for Independent Research \(\vert \) Natural Sciences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The Priority R-tree: A practically efficient and worst-case optimal R-tree. ACM TALG 4(1), 9 (2008)
Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010)
Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. Acta Informatica 1(3), 173–189 (1972)
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18(9), 509–517 (1975)
Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 4, 333–340 (1979)
Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic transformation. J. Algorithms 1(4), 301–358 (1980)
de Bernardo, G., Álvarez-García, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Compact querieable representations of raster data. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Heidelberg (2013)
Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)
Brisaboa, N.R., Ladra, S., Navarro, G.: k\(^2\)-trees for compact web graph representation. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 18–30. Springer, Heidelberg (2009)
Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Proc. 24th FOCS, vol. 83, pp. 226–232 (1983)
Comer, D.: Ubiquitous B-tree. ACM CSUR 11(2), 121–137 (1979)
Dick, C., Schneider, J., Westermann, R.: Efficient geometry compression for gpu-based decoding in realtime terrain rendering. CGF 28(1), 67–83 (2009)
Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM 27(4), 758–771 (1980)
Eppstein, D., Goodrich, M.T., Sun, J.Z.: Skip quadtrees: Dynamic data structures for multidimensional point sets. IJCGA 18(01n02), 131–160 (2008)
Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids. CGTA 47(1), 1–14 (2014)
Gaede, V., Günther, O.: Multidimensional access methods. ACM CSUR 30(2), 170–231 (1998)
Galli, N., Seybold, B., Simon, K.: Compression of sparse matrices: Achieving almost minimal table size. In: Proc. ALEX, pp. 27–33 (1998)
Alvarez Garcia, S., Brisaboa, N.R., de Bernardo, G., Navarro, G.: Interleaved k2-tree: indexing and navigating ternary relations. In: Proc. DCC, pp. 342–351 (2014)
Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc. 1984 ACM SIGMOD, vol. 14, pp. 47–57 (1984)
Haegler, S., Wonka, P., Arisona, S.M., Van Gool, L., Mueller, P.: Grammar-based encoding of facades. CGF 29(4), 1479–1487 (2010)
Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-replicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1998)
van Kreveld, M.J., Overmars, M.H.: Divided k-d trees. Algorithmica 6(1–6), 840–858 (1991)
Lee, D., Wong, C.: Quintary trees: a file structure for multidimensional datbase sytems. ACM TODS 5(3), 339–353 (1980)
Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th FOCS, pp. 28–34 (1978)
Mäkinen, V., Navarro, G.: Rank and select revisited and extended. TCS 387(3), 332–347 (2007)
Orenstein, J.A.: Multidimensional tries used for associative searching. Inform. Process. Lett. 14(4), 150–157 (1982)
Pajarola, R., Widmayer, P.: An image compression method for spatial search. IEEE Trans. Image Processing 9(3), 357–365 (2000)
Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: a dynamic scalable kd-tree. In: Proc. 8th SSTD, pp. 46–65 (2003)
Robinson, J.T.: The KDB-tree: a search structure for large multidimensional dynamic indexes. In: Proc. 1981 ACM SIGMOD, pp. 10–18 (1981)
Samet, H.: Applications of spatial data structures. Addison-Wesley (1990)
Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting and matching repeated patterns for automatic geo-tagging in urban environments. In: CVPR, pp. 1–7 (2008)
Tetko, I.V., Villa, A.E.: A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. J. Neurosci. Meth. 105(1), 1–14 (2001)
Zhu, Q., Yao, X., Huang, D., Zhang, Y.: An Efficient Data Management Approach for Large Cyber-City GIS. ISPRS Archives, 319–323 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bille, P., Gørtz, I.L., Vind, S. (2015). Compressed Data Structures for Range Searching. In: Dediu, AH., Formenti, E., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2015. Lecture Notes in Computer Science(), vol 8977. Springer, Cham. https://doi.org/10.1007/978-3-319-15579-1_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-15579-1_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15578-4
Online ISBN: 978-3-319-15579-1
eBook Packages: Computer ScienceComputer Science (R0)