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Compressed Data Structures
for Range Searching?

Philip Bille??, Inge Li Gørtz??, and Søren Vind

DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{phbi,inge,sovi}@dtu.dk

Abstract. We study the orthogonal range searching problem on points
that have a significant number of geometric repetitions, that is, subsets
of points that are identical under translation. Such repetitions occur in
scenarios such as image compression, GIS applications and in compactly
representing sparse matrices and web graphs. Our contribution is twofold.
First, we show how to compress geometric repetitions that may appear
in standard range searching data structures (such as K-D trees, Quad
trees, Range trees, R-trees, Priority R-trees, and K-D-B trees), and how
to implement subsequent range queries on the compressed representation
with only a constant factor overhead. Secondly, we present a compression
scheme that efficiently identifies geometric repetitions in point sets, and
produces a hierarchical clustering of the point sets, which combined with
the first result leads to a compressed representation that supports range
searching.

Keywords: data and image compression, range searching, relative tree,
DAG compression, hierarchical clustering

1 Introduction

The orthogonal range searching problem is to store a set of axis-orthogonal
k-dimensional objects to efficiently answer range queries, such as reporting or
counting all objects inside a k-dimensional query range. Range searching is a
central primitive in a wide range of applications and has been studied extensively
over the last 40 years [1,3–6,10,11,14,16,19,21–24,26,28,29] (Samet presents an
overview in [30]).

In this paper we study range searching on points that have a significant
number of geometric repetitions, that is, subsets of points that are identical
under translation. Range searching on points sets with geometric repetitions arise
naturally in several scenarios such as data and image analysis [12, 27, 32], GIS
applications [12,20,31,33], and in compactly representing sparse matrices and
web graphs [7, 9, 17,18].
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Our contribution is twofold. First, we present a simple technique to effectively
compress geometric repetitions that may appear in standard range searching
data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority
R-trees, and K-D-B trees). Our technique replaces repetitions within the data
structures by a single copy, while only incurring an O(1) factor overhead in
queries (both in standard RAM model and I/O model of computation). The key
idea is to compress the underlying tree representation of the point set into a
corresponding minimal DAG that captures the repetitions. We then show how
to efficiently simulate range queries directly on this DAG. This construction is
the first solution to take advantage of geometric repetitions. Compared to the
original range searching data structure the time and space complexity of the
compressed version is never worse, and with many repetitions the space can be
significantly better. Secondly, we present a compression scheme that efficiently
identifies translated geometric repetitions. Our compression scheme guarantees
that if point set P1 is a translated geometric repetition of point set P2 and
P1 and P2 are at least a factor 2 times their diameter away from other points,
the repetition is identified. This compression scheme is based on a hierarchical
clustering of the point set that produces a tree of height O(logD), where D is the
diameter of the input point set. Combined with our first result we immediately
obtain a compressed representation that supports range searching.

1.1 Related Work

Several succinct data structures and entropy-based compressed data structures
for range searching have recently been proposed, see e.g., [2,8,15,25]. While these
significantly improve the space of the classic range searching data structure, they
all require at least a Ω(N) bits to encode N points. In contrast, our construction
can achieve exponential compression for highly compressible point sets (i.e. where
there is a lot of geometric repetitions).

A number of papers have considered the problem of compactly representing
web graphs and tertiary relations [7, 9, 18]. They consider how to efficiently
represent a binary (or tertiary) quad tree by encoding it as bitstrings. That is,
their approach may be considered compact storage of a (sparse) adjacency matrix
for a graph. The approach allows compression of quadrants of the quad tree
that only contain zeros or ones. However, it does not exploit the possibly high
degree of geometric repetition in such adjacency matrices (and any quadrant
with different values cannot be compressed).

To the best of our knowledge, the existence of geometric repetitions in the
point sets has not been exploited in previous solutions for neither compression
nor range searching. Thus, we give a new perspective on those problems when
repetitions are present.

1.2 Outline

We first present a general model for range searching, which we call a canonical
range searching data structure, in Section 2. We show how to compress such data
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structures efficiently and how to support range searching on the compressed data
structure in the same asymptotic time as on the uncompressed data structure
in Section 3. Finally, we present a similarity clustering algorithm in Section 4,
guaranteeing that geometric repetitions are clustered such that the resulting
canonical range searching data structure is compressible.

2 Canonical Range Searching Data Structures

We define a canonical range searching data structure T , which is an ordered,
rooted and labeled tree with N vertices. Each vertex v ∈ T has an associated
k-dimensional axis-parallel range, denoted rv , and an arbitrary label, denoted
label(v). We let T (v) denote the subtree of T rooted at vertex v and require that
ranges of vertices in T (v) are contained in the range of v, so for every vertex
u ∈ T (v), ru ⊆ rv . Leafs may store either points or ranges, and each point or
range may be stored in several leafs. The data structure supports range queries
that produce their result after evaluating the tree through a (partial) traversal
starting from the root. In particular, we can only access a node after visiting all
ancestors of the node. Queries can use any information from visited vertices. A
similar model for showing lower bounds for range searching appeared was used
by Kanth and Singh in [21].

Geometrically, the children of a vertex v in a canonical range searching data
structure divide the range of v into a number of possibly overlapping ranges.
At each level the tree divides the k-dimensional regions at the level above into
smaller regions. Canonical range searching data structures directly capture most
well-known range searching data structures, including Range trees, K-D trees,
Quad trees and R-trees as well as B-trees, Priority R-trees and K-D-B trees.

Example: Two-dimensional R tree The two-dimensional R tree is a canonical
range searching data structure since a vertex covers a range of the plane that
contains the ranges of all vertices in its subtree. The range query is a partial
traversal of the tree starting from the root, visiting every vertex having a range
that intersects the query range and reporting all vertices with their range fully
contained in the query range. Figure 1 shows an R tree for a point set, where
each vertex is labeled with the range that it covers. The query described for R
trees can be used on any canonical range searching data structure, and we will
refer to it as a canonical range query.

3 Compressed Canonical Range Searching

We now show how to compress geometric repetitions in any canonical range
searching data structure T while incurring only a constant factor overhead in
queries. To do so we convert T into a relative tree representation, which we then
compress into a minimal DAG representation that replaces geometric repetitions
by single occurrences. We then show how to simulate a range query on T with
only constant overhead directly on the compressed representation. Finally, we
extend the result to the I/O model of computation.
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(b) R tree.

Fig. 1: A two-dimensional point set with R tree ranges overlaid, and the resulting
R tree. Blue ranges are children of the root in the tree, red ranges are at the
second level. A vertex label (a - h) in the R tree identifies the range. We have
omitted the precise coordinates for the ranges, but e.g. range a spans the range
[13, 22]× [46, 54].

3.1 The Relative Tree

A relative tree R is an ordered, rooted and labeled tree storing a relative repre-
sentation of a canonical range searching data structure T . The key idea is we can
encode a range or a point r = [x1, x

′
1]× . . .× [xk, x

′
k] as two k-dimensional vectors

position(r) = (x1, . . . , xk) and extent(r) = (x′1 − x1, . . . , x′k − x′k) corresponding
to an origin position and an extent of r. We use this representation in the relative
tree, but only store extent vectors at vertices explicitly. The origin position vector
for the range rv of a vertex v ∈ R is calculated from offset vectors stored on the
path from the root of R to v, denoted path(v).

Formally, each vertex v ∈ R stores a label, label(v), and a k-dimensional
extent vector extent(rv ). Furthermore, each edge (u, v) ∈ R stores an offset
vector offset(u, v). The position vector for rv is calculated as position(rv ) =∑

(a,b)∈path(v) offset(a, b). We say that two vertices v, w ∈ R are equivalent if the
subtrees rooted at the vertices are isomorphic, including all labels and vectors.
That is, v and w are equivalent if the two subtrees R(v) and R(w) are equal.

It is straightforward to convert a canonical range searching data structure
into the corresponding relative tree.

Lemma 1. Given any canonical range searching data structure T , we can con-
struct the corresponding relative tree R in linear time and space.

Proof. First, note that a relative tree allows each vertex to store extent vectors
and labels. Thus, to construct a relative tree R representing the canonical range
searching data structure T , we can simply copy the entire tree including extent
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(b) Minimal DAG.

Fig. 2: The relative tree obtained from the R tree from Figure 1 and the resulting
minimal DAG G generating the tree. Only coordinates of the lower left corner of
the ranges in the R tree are shown. In the relative tree, the absolute coordinates
for the points are only shown for illustration, in order to see that the relative
coordinates sum to the absolute coordinate along the root-to-leaf paths.

vectors and vertex labels. So we only need to show how to store offset vectors in
R to ensure that the ranges for each pair of copied vertices are equal.

Consider a vertex v ∈ T and its copy vR ∈ R and their parents w ∈ T and
wR ∈ R. Since the extent vector and vertex labels are copied, extent(rv ) =
extent(rvR) and label(v) = label(vR). The offset vector for the (wR, vR) edge is
offset(wR, vR) = position(rv )−position(rw ). We assume the offset for the root is
the 0-vector. Observe that summing up all the offset vectors on path(v) is exactly
position(rv ), and so position(rvR) = position(rv ).

Since each vertex and edge in T is only visited a constant number of times
during the mapping, the construction time for R is O(N). The total number of
labels stored by R is asymptotically equal to the number of labels stored by T .
Finally, the degrees of vertices does not change from T to R. Thus, if v ∈ T is
mapped to vR ∈ R and v requires s space, vR requires Θ(s) space.

3.2 The Data Structure

The compressed canonical data structure is the minimal DAG G of the relative
tree R for T . By Lemma 1 and [13] we can build it in O(N) time. Since G replaces
equivalent subtrees in R by a single subtree, geometric repetitions in T are stored
only once in G. For an example, see Figure 2.

Now consider a range query Q on the canonical range searching data structure
T . We show how to simulate Q efficiently on G. Assuming vG ∈ G generates
vR ∈ R, we say that vG generates v ∈ T if vR is the relative tree representation of
v. When we visit a vertex vG ∈ G, we calculate the origin position position(rvG )
from the sum of the offset vectors along the root-to-vG path. The origin position
for each vertex can be stored on the way down in G, since we may only visit a
vertex after visiting all ancestors (meaning that we can only arrive at vG from a
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root-to-vG path in G). Thus, it takes constant time to maintain the origin position
for each visited vertex. Finally, a visit to a child of v ∈ T can be simulated in
constant additional time by visiting a child of vG ∈ G. So we can simulate a visit
to v ∈ T by visiting the vertex vG ∈ G that generates v and in constant time
calculate the origin position for vG.

Any label comparison takes the same time on G and T since the label must be
equal for vG ∈ G to generate v ∈ T . Now, since there is only constant overhead
in visiting a vertex and comparing labels, it follows that if Q uses t time we can
simulate it in O(t) time on G. In summary, we have the following result.

Theorem 2. Given a canonical range searching data structure T with N vertices,
we can build the minimal DAG representation G of T in linear time. The space
required by G is O(n), where n is the size of the minimal DAG for a relative
representation of T . We can support any query Q on T that takes time t on G
in time O(t).

As an immediate corollary, we get the following result for a number of concrete
range searching data structures.

Corollary 3. Given a K-D tree, Quad tree, R tree or Range tree, we can in
linear time compress it into a data structure using space proportional to the
size of the minimal relative DAG representation which supports canonical range
searching queries with O(1) overhead.

3.3 Extension to the I/O Model

We now show that Theorem 2 extends to the I/O model of computation. We
assume that each vertex in T require Θ(B) space, where B is the size of a
disk block. To allow for such vertices, we relax the definition of a canonical
range searching data structure to allow it to store B k-dimensional ranges. From
Lemma 1 and [13], if a vertex v ∈ T require Θ(B) space, then so does the
corresponding vertex vG ∈ G. Thus, the layout of the vertices on disk does not
asymptotically influence the number of disk reads necessary to answer a query,
since only a constant number of vertices can be retrieved by each disk read.
This means that visiting a vertex in either case takes a constant number of disk
blocks, and so the compressed representation does not asymptotically increase
the number of I/Os necessary to answer the query. Hence, we can support any
query Q that uses p I/Os on T using O(p) I/Os on G.

4 Similarity Clustering

We now introduce the similarity clustering algorithm. Even if there are significant
geometric repetitions in the point set P , the standard range searching data
structures may not be able to capture this and may produce data structures
that are not compressible. The similarity clustering algorithm allows us to create
a canonical range searching data structure for which we can guarantee good
compression using Theorem 2.
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4.1 Definitions

Points and point sets We consider points in k-dimensional space, assuming k is
constant. The distance between two points p1 and p2, denoted d(p1, p2), is their
euclidian distance. We denote by P = {p1, p2, . . . , pr} a point set containing r
points. We say that two point sets P1, P2 are equivalent if P2 can be obtained
from P1 by translating all points with a constant k-dimensional offset vector.

The minimum distance between a point pq and a point set P , mindist(P, pq) =
minp∈P d(p, pq), is the distance between pq and the closest point in P . The mini-
mum distance between two point sets P1, P2 is the distance between the two closest
points in the two sets, mindist(P1, P2) = minp1∈P1,p2∈P2

d(p1, p2). These defini-
tions extend to maximum distance in the natural way, denoted maxdist(P, pq) and
maxdist(P1, P2). The diameter of a point set P is the maximum distance between
any two points in P , diameter(P ) = maxp1,p2∈P d(p1, p2) = maxdist(P, P ).

A point set P1 ⊂ P is lonely if the distance from P1 to any other point is
more than twice diameter(P1), i.e. mindist(P1, P \ P1) > 2× diameter(P1).

Clustering A hierarchical clustering of a point set P is a tree, denoted C (P ),
containing the points in P at the leaves. Each node in the tree C (P ) is a cluster
containing all the points in the leaves of its subtree. The root of C (P ) is the
cluster containing all points. We denote by points(v) the points in cluster node
v ∈ C (P ). Two cluster nodes v, w ∈ C (P ) are equivalent if points(v) is equivalent
to points(w) and if the subtrees rooted at the nodes are isomorphic such that
each isomorphic pair of nodes are equivalent.

4.2 Hierarchical Clustering Algorithm for Lonely Point Sets

Order P in lexicographically increasing order according to their coordinates
in each dimension, and let ∆(P ) denote the ordering of P . The similarity
clustering algorithm performs a greedy clustering of the points in P in lev-
els i = 0, 1, . . . , logD+ 1, where D = diameter(P ). Each level i has an associated
clustering distance threshold di, defined as d0 = 0 and di = 2i−1 for all other i.

The clustering algorithm proceeds as follows, processing the points in order
∆(P ) at each level. If a point p is not clustered at level i > 0, create a new
cluster Ci centered around the point p (and its cluster Ci−1 at the previous level).
Include a cluster Ci−1 from level i − 1 in Ci if maxdist(points(Ci−1), p) ≤ di.
The clusters at level 0 contain individual points and the cluster at level logD+ 1
contains all points.

Lemma 4. Given a set of points P , the similarity clustering algorithm produces
a clustering tree containing equivalent clusters for any pair of equivalent lonely
point sets.

Proof. Let P1 and P2 be two lonely point sets in P such that P1 and P2 are
equivalent, and let d = diameter(P1) = diameter(P2). Observe that a cluster
formed at level i has at most diameter 2di = 2i. Thus, since all points are
clustered at every level and all points outside P1 have a distance greater than
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2d to any point in P1, there is a cluster c ∈ C (P ) formed around point a ∈ P1

at level j = dlog de containing no points outside P1. Now, assume some point
p ∈ P1 is not in points(c). As all unclustered points within distance 2j ≥ d from
a are included in c, this would mean that p was clustered prior to creating c.
This contradicts the assumption that P1 is lonely, since it can only happen if
some point outside P1 is closer than 2d to p. Concluding, c contains exactly the
points in P1. The same argument naturally extends to P2.

Now, let C1, C2 be the clusters containing the points from P1, P2, respectively.
Observe that points(C1) and points(C2) are equivalent. Furthermore, because
each newly created cluster process candidate clusters to include in the same order,
the resulting trees for C1 and C2 are isomorphic and have the same ordering.
Thus, the clusters C1 and C2 are equivalent.

Because the clustering proceeds in O(logD) levels, the height of the clustering
tree is O(logD). Furthermore, by considering all points and all of their candidates
at each level, the clustering can be implemented in time O(N2 logD). Observe
that the algorithm allows creation of paths of clusters with only a single child
cluster. If such paths are contracted to a single node to reduce the space usage,
the space required is O(N) words. In summary, we have the following result.

Theorem 5. Given a set of N points with diameter D, the similarity clustering
algorithm can in O(N2 logD) time create a tree representing the clustering of
height O(logD) requiring O(N) words of space. The algorithm guarantees that
any pair of equivalent lonely point sets results in the same clustering, producing
equivalent subtrees in the tree representing the clustering.

Since the algorithm produces equivalent subtrees in the tree for equivalent
lonely point sets, the theorem gives a compressible canonical range searching
data structure for point sets with many geometric repetitions.

5 Open Problems

The technique described in this paper for generating the relative tree edge
labels only allows for translation of the point sets in the underlying subtrees.
However, the given searching technique and data structure generalizes to scaling
and rotation (if simply storing a parent-relative scaling factor and rotation
angle in each node, along with the nodes parent-relative translation vector). We
consider it an open problem to efficiently construct a relative tree that uses such
transformations of the point set.

Another interesting research direction is if it is possible to allow for small
amounts of noise in the point sets. That is, can we represent point sets that
are almost equal (where few points have been moved a little) in a compressed
way? An even more general question is how well one can do when it comes to
compression of higher dimensional data in general.

Finally, the O(N2 logD) time bound for generating the similarity clustering
is prohibitive for large point sets. So an improved construction would greatly
benefit the possible applications of the clustering method and is of great interest.



Compressed Data Structures for Range Searching 9

References

1. Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The Priority R-tree: A practically
efficient and worst-case optimal R-tree. ACM TALG 4(1), 9 (2008)

2. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation repre-
sentations. In: Proc. 9th LATIN, pp. 170–183 (2010)

3. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes.
Acta Informatica 1(3), 173–189 (1972)

4. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Comm. ACM 18(9), 509–517 (1975)

5. Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE
Trans. Softw. Eng. (4), 333–340 (1979)

6. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic
transformation. J. Algorithms 1(4), 301–358 (1980)
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