Skip to main content

Free Search in Multidimensional Space II

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8962))

Included in the following conference series:

Abstract

Recent publications suggest that resolving multidimensional tasks where optimisation parameters are hundreds and more faces unusual computational limitation. In the same time optimisation algorithms, which perform well on tasks with low number of dimensions, when are applied to high dimensional tasks require infeasible period of time and computational resources. This article presents a novel investigation on Differential Evolution and Particle Swarm Optimisation with enhanced adaptivity and Free Search applied to 200 dimensional versions of three scalable, global, real-value, numerical tests, which optimal values are dependent on dimensions number and virtually unknown for variety of dimensions. The aim is to: (1) identify computational limitations which numerical methods could face on 200 dimensional tests; (2) identify relations between test complexity and period of time required for tests resolving; (3) discover unknown optimal solutions; (4) identify specific methods’ peculiarities which could support the performance on high dimensional tasks. Experimental results are presented and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

  2. Brekke, E.F.: Complex Behaviour in Dynamical Systems, pp. 37–38. The Norwegian University of Science and Technology (2004). http://www.academia.edu/545835/COMPLEX_BEHAVIOR_IN_DYNAMICAL_SYSTEMS. Accessed 29 May 2014

  3. Eberhart, R., Kennedy, J.: Particle swarm optimisation. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press (1995)

    Google Scholar 

  4. Eberhart, R., Shi, Y.: Comparing inertia weights and construction factors in particle swarm optimization. In: Proceedings of the 2000 CEC, pp. 84–89 (2000)

    Google Scholar 

  5. Hendtlass, T.: Particle swarm optimization and high dimensional problem spaces, In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1988–1994 (2009)

    Google Scholar 

  6. Hedar, A.-R.: Test functions for unconstrained global optimization (2014). http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2376.htm. Accessed 29 May 2014

  7. Liang, J.J., Qu, B.-Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report 201311, December 2013 (2014). http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/CEC2014.htm. Accessed 16 September 2014

  8. MacNish, C., Yao, X.: Direction matters in high-dimensional optimisation. In: IEEE Congress on Evolutionary Computation, pp. 2372–2379 (2008)

    Google Scholar 

  9. Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 967–974 (2005)

    Google Scholar 

  10. Penev, K.: Free Search of Real Value or How to Make Computers Think. St. Qu, Southampton (2008). ISBN 978-0-9558948-0-0

    Google Scholar 

  11. Penev, K.: Adaptive intelligence - essential aspects. J. Inf. Technol. Control VII(4), 8–17 (2009). ISSN 1312-2622

    Google Scholar 

  12. Penev, K.: Free search – comparative analysis 100. Int. J. Metaheuristics 3(1), 22–33 (2013)

    Google Scholar 

  13. Liu, P., Lau, F., Lewis, M.J., Wang, C.-l.: A new asynchronous parallel evolutionary algorithm for function optimization. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 401–410. Springer, Heidelberg (2002)

    Google Scholar 

  14. Liu, P., Lewis, M.J.: Communication aspects of an asynchronous parallel evolutionary algorithm. In: Proceedings of the Third International Conference on Communications in Computing, Las Vegas, NV, 24–27 June 2002, pp. 190–195 (2002)

    Google Scholar 

  15. Storn, R.: Constrained optimisation. Dr. Dobb’s J. 20(5), 119–123 (1995)

    Google Scholar 

  16. Yanga, Z., Tanga, K., Yaoa, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  Google Scholar 

  17. Yang, Z., Tang, K., Yao, X.: Differential evolution for high-dimensional function optimization. In: IEEE Congress on Evolutionary Computation, 25–28 September 2007, pp. 3523–3530 (2007)

    Google Scholar 

Download references

Acknowledgements

I would like to thank to my students Asim Al Nashwan, Dimitrios Kalfas, Georgius Haritonidis, and Michael Borg for the design, implementation and overclocking of desktop PC used for completion of the experiments presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalin Penev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Penev, K. (2015). Free Search in Multidimensional Space II. In: Dimov, I., Fidanova, S., Lirkov, I. (eds) Numerical Methods and Applications. NMA 2014. Lecture Notes in Computer Science(), vol 8962. Springer, Cham. https://doi.org/10.1007/978-3-319-15585-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15585-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15584-5

  • Online ISBN: 978-3-319-15585-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics