Skip to main content

Fast Algorithms for Constrained Graph Density Problems

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8973))

Included in the following conference series:

  • 748 Accesses

Abstract

We consider the question of finding communities in large social networks. In literature and practice, “communities” refer to a well-connected subgraph of the entire network. For instance, the notion of graph density has been considered as a reasonable measure of a community. Researchers have also looked at the minimum degree of a subgraph as a measure of the connectedness of the community.

Typically, a community is meaningful in the context of a social network if it is of somewhat significant size. Thus, earlier work has considered the densest graph problem subject to various co-matroid constraints. Most of these algorithms utilize an exact dense subgraph procedure as a subroutine; such a subroutine involves computing maximum flows or solving LPs. Consequently, they are rather inefficient when considered for massive graphs. For massive graphs, we are constrained to run in near-linear time, while producing subgraphs that provide reasonable approximations to the optimal solutions.

Our current work presents efficient greedy algorithms for the problem of graph density subject to an even more general class of constraints called upward-monotone constraints (these subsume co-matroid constraints). This generalizes and extends earlier work significantly. For instance, we are thereby able to present near-linear time 3-factor approximation algorithms for density subject to co-matroid constraints; we are also able to obtain 2-factor LP-based algorithms for density subject to 2 co-matroid constraints.

Our algorithms heavily utilize the core decomposition of a graph.

Work done while at IBM Research, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992)

    MATH  Google Scholar 

  2. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an o(n1/4) approximation for densest k-subgraph. In: STOC, pp. 201–210 (2010)

    Google Scholar 

  4. Chakaravarthy, V.T., Modani, N., Natarajan, S.R., Roy, S., Sabharwal, Y.: Density functions subject to a co-matroid constraint. In: FSTTCS, pp. 236–248 (2012)

    Google Scholar 

  5. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Eisenstat, D., Klein, P.N.: Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs. In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, June 1-4, pp. 735–744 (2013)

    Google Scholar 

  7. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29, 2001 (1999)

    MathSciNet  Google Scholar 

  8. Gajewar, A., Sarma, A.D.: Multi-skill collaborative teams based on densest subgraphs. In: SDM, pp. 165–176 (2012)

    Google Scholar 

  9. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, UC Berkeley (1984)

    Google Scholar 

  10. Kelner, J.A., Lee, Y.T., Orecchia, L., Sidford, A.: An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, pp. 217–226 (2014)

    Google Scholar 

  11. Khot, S.: Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bipartite Clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  Google Scholar 

  14. Lawler, E.: Combinatorial optimization - networks and matroids. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  15. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3), 417–427 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rangapuram, S.S., Bühler, T., Hein, M.: Towards realistic team formation in social networks based on densest subgraphs. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 1077–1088 (2013)

    Google Scholar 

  17. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense subgraphs with restrictions and applications to gene annotation graphs. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer (2003)

    Google Scholar 

  19. Sherman, J.: Nearly maximum flows in nearly linear time. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berkeley, CA, USA, October 26-29, pp. 263–269 (2013)

    Google Scholar 

  20. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD, pp. 939–948 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chakaravarthy, V., Gupta, N., Pancholi, A., Roy, S. (2015). Fast Algorithms for Constrained Graph Density Problems. In: Rahman, M.S., Tomita, E. (eds) WALCOM: Algorithms and Computation. WALCOM 2015. Lecture Notes in Computer Science, vol 8973. Springer, Cham. https://doi.org/10.1007/978-3-319-15612-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15612-5_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15611-8

  • Online ISBN: 978-3-319-15612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics