Skip to main content

A Practical Succinct Data Structure for Tree-Like Graphs

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8973))

Included in the following conference series:

  • 762 Accesses

Abstract

We present a new succinct data structure for graphs that are “tree-like,” in the sense that the number of “additional” edges (w.r.t. a spanning tree) is not too high. Our algorithmic idea is to represent a BFS-spanning tree of the graph with a succinct data structure for trees, and enhance it with additional information that accounts for the non-tree edges. In practical tests, our data structure performs well for graphs containing up to 10% of non-tree edges, reducing the space of a pointer-based representation by a factor of ≈20, while increasing the worst-case running times for the operations by roughly the same factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice. In: Proc. ALENEX, pp. 84–97. SIAM (2010)

    Google Scholar 

  2. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Belazzougui, D., Navarro, G.: New lower and upper bounds for representing sequences. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 181–192. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable graphs. In: Proc. SODA, pp. 679–688. ACM/SIAM (2003)

    Google Scholar 

  6. Blandford, D.K., Blelloch, G.E., Kash, I.A.: An experimental analysis of a compact graph representation. In: ALENEX/ANALC, pp. 49–61. SIAM (2004)

    Google Scholar 

  7. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees for range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Farzan, A., Fischer, J.: Compact representation of posets. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 302–311. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Farzan, A., Munro, J.I.: A uniform approach towards succinct representation of trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Gavoille, C., Hanusse, N.: On compact encoding of pagenumber k graphs. Discrete Mathematics & Theoretical Computer Science 10(3), 23–34 (2008)

    MathSciNet  Google Scholar 

  12. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gog, S., Ohlebusch, E.: Fast and lightweight LCP-array construction algorithms. In: Proc. ALENEX, pp. 25–34. SIAM (2011)

    Google Scholar 

  14. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a tool for text indexing. In: Proc. SODA, pp. 368–373. ACM/SIAM (2006)

    Google Scholar 

  15. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation of rank and select queries. In: Poster Proceedings Volume of 4th Workshop on Efficient and Experimental Algorithms (WEA), Greece, pp. 27–38. CTI Press and Ellinika Grammata (2005)

    Google Scholar 

  16. Grossi, R., Ottaviano, G.: Design of practical succinct data structures for large data collections. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 5–17. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Gurevich, Y., Stockmeyer, L., Vishkin, U.: Solving NP-hard problems on graphs that are almost trees and an application to facility location problems. J. ACM 31(3), 459–473 (1984)

    MATH  MathSciNet  Google Scholar 

  18. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic networks. Genome Biology and Evolution 3, 23 (2011)

    Article  Google Scholar 

  19. Jacobson, G.J.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554. IEEE Computer Society (1989)

    Google Scholar 

  20. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4), 596–603 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  23. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs. In: Proc. FOCS, pp. 118–126. IEEE Computer Society (1997)

    Google Scholar 

  25. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM J. Comput. 31(2), 353–363 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313. IEEE Computer Society (2008)

    Google Scholar 

  28. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. ACM Transactions on Algorithms 3(4), Article No. 43 (2007)

    Google Scholar 

  29. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput. Syst 41(4), 589–607 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fischer, J., Peters, D. (2015). A Practical Succinct Data Structure for Tree-Like Graphs. In: Rahman, M.S., Tomita, E. (eds) WALCOM: Algorithms and Computation. WALCOM 2015. Lecture Notes in Computer Science, vol 8973. Springer, Cham. https://doi.org/10.1007/978-3-319-15612-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15612-5_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15611-8

  • Online ISBN: 978-3-319-15612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics