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Abstract
In this paper, we consider the relevance of timeline in the construction of datasets,
to highlight its impact on the performance of a machine learning-based malware
detection scheme. Typically, we show that simply picking a random set of known
malware to train a malware detector, as it is done in many assessment scenarios
from the literature, yields significantly biased results. In the process of assessing
the extent of this impact through various experiments, we were also able to con-
firm a number of intuitive assumptions about Android malware. For instance,
we discuss the existence of Android malware lineages and how they could impact
the performance of malware detection in the wild.

1 Introduction
Malware detection is a challenging endeavor in mobile computing, where thou-
sands of applications are uploaded everyday on application markets [1] and often
made available for free to end-users. Market maintainers then require efficient
techniques and tools to continuously analyze, detect and triage malicious ap-
plications in order to keep the market as clean as possible and maintain user
confidence. For example, Google has put in place a number of tools and pro-
cesses in the Google Play official market for Android applications. However,
using antivirus software on large datasets from Google reveals that hundreds of
suspicious apps are still distributed incognito through this market [2].

Unfortunately, malware pose various threats that cannot be ignored by users,
developers and retailers. These threats range from simple user tracking and leak-
age of personal information [3], to unwarranted premium-rate subscription of
SMS services, advanced fraud, and even damaging participation to botnets [4].
To address such threats, researchers and practitioners increasingly turn to new
techniques that have been assessed in the literature for malware detection in
the wild. Research work have indeed yielded promising approaches for malware
detection. A comprehensive survey of various techniques can be found in [5].
Approaches for large-scale detection are often based on Machine learning tech-
niques, which allow to sift through large sets of applications to detect anomalies
based on measures of similarity of features [6–14].

To assess malware detection in the wild, the literature resorts to the 10-Fold
Cross validation scheme with datasets that we claim are biased and yield biased
results. Indeed, various aspects of construction of training datasets are usually
overlooked. Among such aspects is the history aspect which assumes that the



training dataset, which is used for building classifiers, and the test dataset, which
is used to assess the performance of the technique, should be historically coher-
ent : the former must be historically anterior to the latter. This aspect is indeed
a highly relevant constraint for real-world use cases and we feel that evaluation
and practical use of state-of-the-art malware detection approaches must follow
a process that mimics the history of creation/arrival of applications in markets
as well as the history of appearance of malware: detecting malware before they
are publicly distributed in markets is probably more useful than identifying them
several months after they have been made available.

Nevertheless, in the state-of-the-art literature, the datasets of evaluation are
borrowed from well-known labelled repositories of apps, such as the Genome
project, or constructed randomly, using market-downloaded apps, with the help
of Antivirus products. However, the history of creation of the various apps that
form the datasets are rarely, if ever, considered, leading to situations where some
items in the training datasets are ”from the future”, i.e., posterior,
in the timeline, to items in the tested dataset. Thus, different research
questions are systematically eluded in the discussion of malware detector per-
formance:
RQ-1. Is a randomly sampled training dataset equivalent to a dataset that is
historically coherent to the test dataset?
RQ-2. What is the impact of using malware knowledge ”from the future” to
detect malware in the present?
RQ-3. How can the potential existence of families of malware impact the features
that are considered by machine learning classifiers?
RQ-4. How fresh must be the apps from the training dataset to yield the best
classification results?
RQ-5. Is it sound/wise to account for all known malware to build a training
dataset?

This paper. We propose in this paper to investigate the effect of ignor-
ing/considering historical coherence in the selection of training and test datasets
for malware detection processes that are built on top of Machine learning tech-
niques. Indeed we note from literature reviews that most authors do not take
this into account. Our ultimate aim is thus to provide insights for building ap-
proaches that are consistent with the practice of application –including malware–
development and registration into markets. To this end, we have devised several
typical machine learning classifiers and built a set of features which are textual
representations of basic blocks extracted from the Control-Flow Graph of appli-
cations’ byte-code. Our experiments are also based on a sizeable dataset of about
200,000 Android applications collected from sources that are used by authors of
contributions on machine learning-based malware detection.

The contributions of this paper are:
– We propose a thorough study of the history aspect in the selection of training

datasets. Our discussions highlight different biases that may be introduced if
this aspect is ignored or misused.

– Through extensive experiments with tens of thousands of Android apps, we
show the variations that the choice of datasets age can have on the malware



detection output. To the best of our knowledge, we are the first to raise this
issue and to evaluate its importance in practice.

– We confirm, or show how our experiments support, various intuitions on An-
droid malware, including the existence of so-called lineages.

– Finally, based on our findings, we discuss (1) the assessment protocols of
machine learning-based malware detection techniques, and (2) the design of
datasets for training real-world malware detectors.

The remainder of this paper is organized as follows. Section 2 provides some
background on machine learning-based malware detection and highlights the as-
sociated assumptions on dataset constructions. We also briefly describe our own
example of machine-learning based malware detection. Section 3 presents related
work to support the ground for our work. Section 4 describes the experiments
that we have carried out to answer the research questions, and presents the take-
home messages derived from our empirical study. We propose a final discussion
on our findings in Section 5 and conclude in Section 6.

2 Preliminaries
The Android mobile platform has now become the most popular platform with
estimated hundreds of thousands of apps in the official Google Play market alone
and downloads in excess of billions. Unfortunately, as this popularity has been
growing, so is malicious software, i.e., malware, targeting this platform. Studies
have shown that, on average, Android malware remain unnoticed up to 3 months
before a security researcher stumbles on it [15], leaving users vulnerable in the
mean time. Security researchers are constantly working to propose new malware
detection techniques, including machine learning-based approaches, to reduce
this 3-months gap.

Machine Learning: Features & Algorithms: As summarized by Alpaydin, ”Ma-
chine Learning is programming computers to optimize a performance criterion
using example data or past experience” [16]. A common method of learning is
known as supervised learning, a scheme where the computer is helped through a
first step of training. The training data consists of Feature Vectors, each associ-
ated with a label, e.g., in our case, apps that are already known to be malicious
(malware class) or benign (goodware class). After a run of the learning algo-
rithm, the output is compared to the target output and learning parameters
may be corrected according to the magnitude of the error. Consequently, to
perform a learning that will allow a classification of apps into the malware and
goodware classes, the approach must define a correlation measure and a discrim-
inative function. The literature of Android malware detection includes diverse
examples of features, such as n-grams of bytecode, API usages, application per-
mission uses, etc. There also exist a variety of classification algorithms, including
Support Vector Machine (SVM) [17], the RandomForest ensemble decision-trees
algorithm [18], the RIPPER rule-learning algorithm [19] and the tree-based C4.5
algorithm [20]. In our work, because we focus exclusively on the history aspect,
we constrain all aforementioned variables to values that are widely used in the
literature, or based on our own experiments which have allowed us to select the



most appropriate settings. Furthermore, it is noteworthy that we do not aim for
absolute performance, but rather measure performance delta between several
approaches of constructing training datasets.

Working Example: We now provide details on the machine-learning approach
that will be used as a working example to investigate the importance of history
in the selection of training and test datasets. Practically, to obtain the features
for our machine-learning processes, we perform static analysis of Android appli-
cations’ bytecode to extract an abstract representation of the program’s control-
flow graph (CFG). We obtain a CFG that is expressed as character strings using
a method devised by Pouik et al. in their work on establishing similarity be-
tween Android applications [21], and that is based on a grammar proposed by
Cesare and Xiang [22]. The string representation of a CFG is an abstraction of
the application’s code; it retains information about the structure of the code,
but discards low-level details such as variable names or register numbers. This
property is desirable in the context of malware detection as two variants of a
malware may share the same abstract CFG while having different bytecode.
Given an application’s abstract CFG, we collect all basic blocks that compose it
and refer to them as the features of the application. A basic block is a sequence
of instructions in the CFG with only one entry point and one exit point. It thus
represents the smallest piece of the program that is always executed altogether.
By learning from the training dataset, it is possible to expose, if any, the basic
blocks that appear statistically more in malware.

The basic block representation used in our approach is a high-level abstrac-
tion of the atomic parts of an Android application. A more complete description
of this feature set can be found in [23]. For reproducibility purposes, and to
allow the research community to build on our experience, the data we used (full
feature matrix and labels) is available on request.

Methodology: This study is carried out as a large scale experiment that aims at
investigating the extent of the relevance of history in assessing machine learning-
based malware detection. This study is important for paving the road to a true
success story of trending approaches to Android malware detection. To this end,
our work must rely on an extensive dataset that is representative of real-world
Android apps and of datasets used in the state-of-the-art literature.

Dataset: To perform this study we collect a large dataset of android apps from
various markets: 78, 460 (38.04%) apps from Google Play, 72, 093 (34.96%) from
appchina, and 55, 685 (27.00%) from Other markets1. A large majority of our
dataset comes from Google Play, the official market, and appchina.

An Android application is distributed as an .apk file which is actually a ZIP
archive containing all the resources an application needs to run, such as the appli-
cation binary code and images. An interesting side-effect of this package format
is that all the files that makes an application go from the developer’s computer
to end-users’ devices without any modification. In particular, all metadata of
the files contained in the .apk package, such as the last modification date, are

1 Other markets include anzhi, 1mobile, fdroid, genome, etc.



Approach Year Sources Historical Coherence

DREBIN [6] 2014 ”Genome, Google Play, Chinese and russian markets, VirusTotal No

[24] 2013 ”common Android Markets” for goodware, ”public databases of antivirus companies” for malware No

[13] 2012 Undisclosed No

DROIDMAT [25] 2012 Contagio mobile for malware, Google Play for goodware No

[26] 2013 Genome, VirusTotal, Google Play No

[27] 2013 Contagio mobile and Genome for malware, Undisclosed for goodware No

[28] 2013 ”from official and third party Android markets” for Goodware, Genome for malware No

[29] 2013 Google Play (labels from 10 commercial Anti virus scanners) No

Table 1. A selection of Android malware detection approaches

preserved. All bytecode, representing the application binary code, is assembled
into a classes.dex file that is produced at packaging-time. Thus the last modi-
fication date of this file represents the packaging time. In the remainder of this
paper, packaging date and compilation date will refer to this date.

To infer the historical distribution of the dataset applications, we rely on
compilation date at which the Dalvik2 bytecode (classes.dex file) was produced.
We then sent all the app packages to be scanned by virus scanners hosted by
VirusTotal 3 . VirusTotal is a web portal which hosts about 40 products from
renown anti virus vendors, including McAfeer, Symantecr or Avastr. In this
study, an application is labelled as malware if at least one scanner flags it as
such.

Machine learning Parameters: In all our experiments, we have used the param-
eters that provided the best results in a previous large-scale study [23]. Thus,
we fixed the number of features to 5,000 and selected the 5,000 features with
highest Information Gain values as measured on the training sets. The Random-
Forest algorithm, as implemented in the Weka4 Framework, was used for all our
experiments.

3 Related Work

In this section, we propose to revisit related work to highlight the importance of
our contributions in this paper. We briefly present previous empirical studies and
their significance for the malware detection field. Then we go over the literature
of malware detection to discuss the assessment protocols.

Empirical studies: Empirical studies have seen a growing interest over the years
in the field of computer science. The weight of empirical findings indeed help
ensure that research directions and results are in line with practices. This is
especially important when assessing the performance of a research approach. A
large body of the literature has resorted to extensive empirical studies for devis-
ing a reliable experimental protocol [30–32]. Recently, Allix et al. have proposed
a large-scale empirical studies on the dataset sizes used in the assessment of
machine learning-based malware detection approaches [23]. In their work, the
authors already questioned the assessment protocols used in the state-of-the-art
literature. Guidelines for conducting sound Malware Detection experiments were

2 Dalvik is the virtual machine running Android apps.
3 https://www.virustotal.com
4 http://www.cs.waikato.ac.nz/ml/weka/

https://www.virustotal.com
http://www.cs.waikato.ac.nz/ml/weka/ 


proposed by Rossow et al [33]. Our work follows the same objectives, aiming to
highlight the importance of building a reliable assessment protocol for research
approaches, in order to make them more useful for real-world problems.

In the field of computer security, empirical studies present distinct challenges
including the scarcity of data about cybercrimes. We refer the reader to a report
by Böhme and Moore [34]. Recently, Visaggio et al. empirically assessed different
methods used in the literature for detecting obfuscated code [35]. Our work is
in the same spirit as theirs, since we also compare different methods of selecting
training datasets and draw insights for the research community.

With regards to state-of-the-art literature tackled in this work, a significant
number of Machine Learning approaches for malware detection [6, 29, 36–39]
have been presented to the research community. The feature set that we use in
this paper was evaluated in [23] and achieved better performance than those
approaches. Thus, our experiments are based on a sound feature set for malware
detection. We further note that in the assessment protocol of all these state-of-
the-art approaches, the history aspect was eluded when selecting training sets.

Malware Detection & Assessments: We now review the assessment of malware
detection techniques that are based on machine learning. For comparing per-
formances with our own approach, we focus only on techniques that have been
applied to the Android ecosystem. In Table 1, we list recent ”successful” ap-
proaches from the literature of malware detection, and describe the origin of
the dataset used for the assessment of each approach. For many of them, the
applications are borrowed from known collections of malware samples or from
markets such as Google Play. They also often use scanners from VirusTotal to
construct the ground truth. In our approach, we have obtained our datasets
in the same ways. Unfortunately, to the best of our knowledge and according
to their protocol descriptions from the literature, none of the authors has con-
sidered clearly ordering the data to take into account the history aspect. It is
therefore unfortunate that the high performances recorded by these approaches
may never affect the fight against malware in markets.

In the remainder of this section we list significant related work examples,
provide details on the size of their dataset and compare them to our history-
unaware 10-Fold experiments. None of them has indeed taken into account the
history aspect in their assessment protocol. In 2012, Sahs & Khan [13] built an
Android malware detector with features based on a combination of Android-
specific permissions and a Control-Flow Graph representation. Their classifier
was tested with k-Fold 5 cross validation on a dataset of 91 malware and 2 081
goodware. Using permissions and API calls as features, Wu et al. [25] performed
their experiments on a dataset of 1 500 goodware and 238 malware. In 2013,
Amos et al. [26] leveraged dynamic application profiling in their malware de-
tector. Demme et al. [27] also used dynamic application analysis to perform
malware detection with a dataset of 210 goodware and 503 malware. Yerima et
al. [28] built malware classifiers based on API calls, external program execution

5 The value of k used by Sahs & Khan was not disclosed.



and permissions. Their dataset consists of 1 000 goodware and 1 000 malware.
Canfora et al. [24] experimented feature sets based on SysCalls and permissions.
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4 Experimental Findings

In this section, we report on the experiments that we have conducted, and high-
light the findings. First we discuss to what extent it is important that datasets
remain historically coherent, as opposed to being selected at random (cf. Sec-
tion 4.1). This discussion is based on qualitative aspects as well as quantitative
evaluation. Second, we conduct experiments that attempt to provide a hint to
the existence of lineages in Android malware in Section 4.2. Subsequently, we
investigate in Section 4.3 the bias in training with new data for testing with old
data, and inversely. Finally, we investigate the limitations of a naive approach
which would consist in accumulating information on malware samples as time
goes, in the hope of being more inclusive in the detection of malware in the
future (cf. Section 4.4).

4.1 History-aware Construction of datasets

As described in Section 2, a key step of machine-learning approaches is the
training of classifiers. The construction of the corresponding training dataset
is consequently of importance, yet details about how it is achieved are largely
missing from the literature.

There are two common selection patterns for training datasets: (1) use a col-
lected and published dataset of malware, such as Genome, to which one adds
a subset of confirmed goodware; (2) build the dataset by randomly picking a
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4 Experimental Findings

In this section, we report on the experiments that we have conducted, and high-
light the findings. First we discuss to what extent it is important that datasets
remain historically coherent, as opposed to being selected at random (cf. Sec-
tion 4.1). This discussion is based on qualitative aspects as well as quantitative
evaluation. Second, we conduct experiments that attempt to provide a hint to
the existence of lineages in Android malware in Section 4.2. Subsequently, we
investigate in Section 4.3 the bias in training with new data for testing with old
data, and inversely. Finally, we investigate the limitations of a naive approach
which would consist in accumulating information on malware samples as time
goes, in the hope of being more inclusive in the detection of malware in the
future (cf. Section 4.4).

4.1 History-aware Construction of datasets

As described in Section 2, a key step of machine-learning approaches is the
training of classifiers. The construction of the corresponding training dataset
is consequently of importance, yet details about how it is achieved are largely
missing from the literature, as was shown in Section 3.

There are two common selection patterns for training datasets: (1) use a col-
lected and published dataset of malware, such as Genome, to which one adds
a subset of confirmed goodware; (2) build the dataset by randomly picking a
subset of goodware and malware from a dataset collected from either an online
market or an open repository. Both patterns lead to the same situations: i.e. that
some items in the training dataset may be historically posterior to items in the
tested dataset. In other words, (1) the construction of the training set is equiv-
alent to a random history-unaware selection from a mix of known malware and
goodware; and (2) the history of creation/apparition of android applications is
not considered as a parameter in assessment experiments, although the practice
of malware detection will face this constraint.



Following industry practices, when a newly uploaded set of applications must
be analyzed for malware identification, the training datasets that are used are,
necessarily, historically anterior to the new set. This constraint is however eluded
in the validation of malware detection techniques in the research literature. To
clearly highlight the bias introduced by current assessment protocols, we have
devised an experiment that compares the performance of the machine learning
detectors in different scenarios. The malware detectors are based on classifiers
that are built in two distinct settings: either with randomly-constructed training
datasets using a process described in Figure 1 or with datasets that respect the
history constraint. To reduce the bias between these comparisons, we ensure that
the datasets are of identical sizes and with the same class imbalance between
goodware and malware. Thus to build a history-unaware dataset R0 for compar-
ing with training dataset constituted of data from month M0, we randomly pick
within the whole dataset the same numbers of goodware and malware as in M0.
We perform the experiments by training first on M0 and testing on all following
months, then by training on R0 and testing on all months (cf. Figure 2).

Figure 3 illustrates the results of our experiments. When we randomly select
the training dataset from the entire dataset and build classifiers for testing ap-
plications regrouped by month, the precision and recall values of the malware
detector range between 0.5 and 0.85. The obtained F-Measure is also relatively
high and roughly stable. This performance is in line with the performances of
state-of-the-art approaches reported in the literature.
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Fig. 3. Performance of malware detectors with history-aware and with history-unaware
selection of training datasets

We then proceed to constrain the training dataset to be historically coherent
to the test dataset. We select malware and benign apps in the set of apps from a
given month, e.g., M0, as the source of data for building the training dataset for
the classification. The tests sets remain the same as in the previous experiments,
i.e., the datasets of applications regrouped by month. We observe that as we move
away from M0 to select test data, the performance considerably drops.



We have repeated this experiment, alternatively selecting each different month
from our time-line as the month from which we draw the training dataset. Using
a training set that is not historically coherent always led to significantly higher
performance than using a historically coherent training set.

Finding RQ-1: Constructing a training dataset that is consistent with the his-
tory of apparition of applications yields performances that are significantly worst
than what is obtained when simply randomly collecting applications in markets
and repositories. Thus, without further assessment, state-of-the-art ap-
proaches cannot be said to be powerful in real-world settings.

Finding RQ-2: With random selections, we allow malware ”from the future”
to be part of the training sets. This however leads to biased results since the
performance metrics are artificially improved.

4.2 Lineages in Android Malware

Our second round of experiments has consisted in investigating the capabilities
of a training dataset to help build classifiers that will remain performant over
time. In this step of the study we aim at discovering how the variety of malware
is distributed across time. To this end, we consider building training datasets
with applications in each month and test the yielded classifiers with the data of
each following months.

Figures 4 and 5 provide graphs of the evolution over time of, on the one
hand, F-Measure and, on the other hand, Precision of malware detectors that
have been built with a training dataset at month Mi and applied on months
Mk,k>i. Disregarding outliers which lead to the numerous abrupt rise and breaks
in the curves, the yielded classifiers have, on average, a stable and high Precision,
with values around 0.8. This finding suggests that whatever the combination of
training and test dataset months, the built classifiers still allow to identify with
good precision the malware whose features have been learnt during training.

On the other hand, the F-measure performance degrades over time: for a
given month Mi whose applications have been used for the training datasets,
the obtained classifier is less and less performant in identifying malware in the
following months Mk,k>i. This finding, correlated to the previous one, suggests
that, over time, the features that are learnt in the training dataset correspond less
and less to all malware when we are in the presence of lineages in the Android
malware. We define a lineage as a set of malware that share the same traits,
whether in terms of behavior or of coding attributes. Note that we differentiate
the term lineage from the term family which, in the literature, concern a set
of malware that exploit the same vulnerability. Lineage is a more general term.

The experiments also highlight the bias introduced when training classifiers
with a specific and un-renewed set of malware, such as the Genome dataset,
which is widely used. It also confirms why the random selection of malware
in the entire time-line as presented in Section 4.1, provides good performances:
many lineages are indeed represented in such training datasets, including lineages
that should have appeared for the first time in the test dataset.
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Fig. 4. Performance Evolution of malware detectors over time
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Fig. 5. Evolution of Precision of malware detectors over time

Finding-RQ3: Android malware is diversified. The existence of lineages com-
plicates malware detection, since training datasets must be regularly updated to
include a larger variety of malware lineages representatives.

4.3 Is knowledge ”from the future” the Grail?

Previous experiments have shown that using applications from the entire time-
line, without any historical constraint, favorably impacts the performance of
malware detectors. We have then proceeded to show that, when the training
dataset is too old compared to the test dataset, this performance drops signif-
icantly. We now investigate whether training data that are strictly posterior to
the test dataset could yield better performance than using data that are his-
torically anterior (coherent). Such a biased construction of datasets is not fair
when the objective is to actively keep malicious apps from reaching the public
domain. However, such a construction can be justified by the assumption that
the present might always contain representatives of malware lineages that have
appeared in the past.

In the Android ecosystem, thousands of applications are created weekly by
developers. Most of them, including malware from new lineages, cannot be thor-
oughly checked. Nevertheless, after some time, antivirus vendors may identify
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Fig. 6. Performance of malware detectors when using recent data to test on old datasets

the new malware. Machine-learning processes can thus be used to automate a
large-scale identification of malware in applications that have been made avail-
able for some time. Figure 6 depicts the F-Measure performance evolution of the
malware detectors: for each month Mi, that is used for training, the obtained
classifiers are used to predict malware in the previous months Mk,k<i. Overall,
the performance is dropping significantly with the time difference between test
and training datasets.

Finding-RQ4: Apps, including malware, used for training in machine learning-
based malware detection must be historically close to the target dataset that
is tested. Older training datasets cannot account for all malware lineages, and
newer datasets do not contain enough representatives of malware from the past.

4.4 Naive Approaches to the Construction of Training Datasets

Given the findings of our study presented in previous sections, we investigate
through extensive experiments the design of a potential research approach for
malware detection which will be in line with the constraints of industry prac-
tices. At a given time t, one can only build classifiers using datasets that are
anterior to t. Nevertheless, to improve our chances of maintaining performance,
two protocols can be followed:

(1) Keep renewing the training dataset entirely to stay historically close to
the target dataset of test. This renewal process must however be automated to
remain realistic: In this scenario, we assume that a bootstrap step is achieved
with antivirus products at month M0 to provide a first reliable training dataset.
The malware detection system is then on its own for the following months. Thus,
the classification that is obtained on month M1, using month M0 for training,
will be used ”as is” to train the classifiers for testing applications data of month
M2. This system is iterated until month Mn as depicted in Figure 7, meaning
that, once it is bootstrapped, the detection system is automated and only relies
on its test results to keep training new classifiers. In practice, such an approach
makes sense due to the high precision values recorded in previous experiments.



(2) Include greedily the most knowledge one can collect on malware lineages:
This scenario is also automated and requires bootstrapping. However, instead
of renewing the training dataset entirely each month, new classification results
are added to the existing training dataset and used to build classifiers for the
following month.

Figure 8 shows that the F-measure performance is slightly better for sce-
nario 2. The detailed graphs show that, in the long run, the Recall in scenario 2
is indeed better while the Precision is lower than in scenario 1. In summary,
these two scenarios exhibit different trade-offs between Precision and Recall in
the long run: Scenario 1 manages to pinpoint a small number of malware with
good precision while scenario 2 instead finds more malware at the cost of a higher
false-positive rate.

While of little use in isolation, those scenarios provide insights through empir-
ical evidence on how machine learning-based malware detection systems should
consider the construction of training sets.

Finding-RQ5: Maintaining performance of malware detectors cannot be
achieved by simply adding/renewing information in training datasets based on
the output of previous runs. However, these scenarios have shown interesting
impact on performance evolution over time, and must be further investigated to
identify the right balance.

M0 M1 M2 M3 M4

Fig. 7. Using classification results of Mn−1 as training dataset for testing Mn

5 Insights and Future work

Findings (1) History constraints must not be eluded in the construction of
training datasets of machine learning-based malware detectors. Indeed, they in-
troduce significant bias in the interpretation of the performance of malware
classifiers. (2) There is a need for building a reliable, and continuously updated,
benchmark for machine learning-based malware detection approaches. We make
available, upon request, the version we have built for this work. Our bench-
mark dataset contains about 200,000 Android applications spanning 2 years of
historical data of Android malware.

Insights (1) Machine-learning cannot assure the identification of an entirely
new lineage of malware that is not represented in the training dataset. Thus,
there is need to regularly seed the process with outside information, such as
from antivirus vendors, of new lineages of malware. (2) In real world settings,
practitionners cannot be presented with a reliable dataset for training. Indeed,
most malware are discovered, often manually, by antivirus vendors far later after
they have been available to end-users [15]. Large-scale ML-based malware de-
tection must therefore be used to automate the discovery of variants of malware
which have been authenticated in a separate process.
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Fig. 8. Comparing two naive approaches

Threat to Validity To perform this study, we have considered a unique use-
case scenario for using machine learning-based malware detection. This scenario
consists in Actively preventing malware from reaching markets and is extremely
relevant to most real-world constraints. Indeed, in practice, it is important to
keep the window of opportunity very narrow. Thus, to limit the number of
infected devices, Android malware must be detected as they arrive in the market.
It is therefore important that state-of-the-art approaches be properly assessed,
taking into account history constraints.

There is however a second use-case scenario which concerns online reposi-
tories for research and would consist on cleaning such repositories regularly. In
this scenario, repositories maintainers attempt to filter malicious apps once a
new kind of malware has been discovered. In such a context, practitionners can
afford to wait for a long time before building relevant classifiers for identifying
malware that have been since in the repository. Nevertheless, such repositories
are generally of reasonable size and can be scanned manually and with the help
of anti virus products.

There is a possibility that the results obtained in this paper would not be
reproduced with either a different feature set and/or a different dataset. Nonethe-
less, we have no reason to believe that the way the dataset was collected induced
any bias.



Future work (1) Building on the insights of our experiments, we plan to inves-
tigate how to maintain the performance of machine learning-based malware de-
tectors until antivirus vendors can detect a new strain of malware. This research
direction could help bring research work to be applied on real-world processes,
in conjunction with antivirus products which are still widely used, although they
do not scale to the current rates of malware production. (2) To account for the
evolution of representations of malware lineages in training datasets over time,
we plan to investigate a multi-classifier approach, each classifier being trained
with more or less outdated data and weighted accordingly. A first challenge will
be on how to infer or automate the choice of weights for different months in the
timeline to build the most representative training dataset.

6 Conclusion

Given the steady increase in the adoption of smartphones worldwide, and the
growth of application development for such devices, it is becoming important
to protect users from the damages of malicious apps. Malware detection has
thus been in recent years the subject of renewed interest, and researchers are
investigating scalable techniques to spot and filter out apps with malicious traits
among thousands of benign apps.

However, more than in other fields, research in computer security must yield
techniques and approaches that are truly usable in real-world settings. To that
end, assessment protocols of malware detection research approaches must reflect
the practice and constraints observed by market maintainers and users. Through
this empirical study we aim to prevent security research from producing ap-
proaches and techniques that are not in line with reality. Furthermore, given the
performances reported in state-of-the-art literature of malware detection, while
market maintainers still struggle to keep malware out of markets, it is important
to clear the research field by questioning current assessment protocols.

In this paper, we have investigated the relevance of history in the selection of
assessment datasets. We have performed large-scale experiments to highlight the
different bias that can be exhibited by different scenarios of dataset selection.
Our main conclusion is that the assessment protocol used for current approaches
in the state-of-the-art literature is far from the reality of a malware detection
practice for keeping application markets clean. We have further investigated
naive approaches to training dataset construction and drawn insights for future
work by the research community.
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34. Böhme, R., Moore, T.: Challenges in empirical security research. Technical report,
Singapoore Management University (2012)

35. Visaggio, C.A., Pagin, G.A., Canfora, G.: An empirical study of metric-based
methods to detect obfuscated code. International Journal of Security & Its Appli-
cations 7(2) (2013)

36. Aafer, Y., Du, W., Yin, H.: Droidapiminer: Mining api-level features for robust
malware detection in android. In: Proceedings of the International Conference on
Security and Privacy in Communication Networks. SecureComm (2013)

37. Barrera, D., Kayacik, H., van Oorschot, P., Somayaji, A.: A methodology for em-
pirical analysis of permission-based security models and its applications to android.
In: Proceedings of ACM Conference on Computer and Communications Security.
CCS (2010)

38. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: Triage for market-scale
mobile malware analysis. In: Proceedings of ACM Conference on Security and
Privacy in Wireless and Mobile Networks. WISEC (2013)

39. Peng, H., Gates, C.S., Sarma, B.P., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for rangking risks of android apps.
In: Proceedings of ACM Conference on Computer and Communications Security.
CCS (2012)


	Are Your Training Datasets Yet Relevant?

