Skip to main content

High-Accuracy Phase-Equalizer for Communication-Channel Compensation

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9012))

Included in the following conference series:

Abstract

In digital communications, a nonlinear-phase communication channel needs to be equalized by using a phase-equalizer in such a way that the nonlinear-phase can be compensated and thus the whole communication channel has nearly linear-phase. As a result, the transmitted signal waveform will not be distorted. This paper proposes an improved iterative second-order-cone-programming (iterSOCP) scheme for designing an allpass digital phase-equalizer in the minimax sense. That is, the maximum absolute error of the phase response (maximum phase-error) is to be minimized. This iterSOCP scheme simplifies the minimax design problem as an iterative SOCP problem, and this minimax design problem is solved by utilizing an SOCP solver to find the coefficients of the allpass phase-equalizer. It should be noted that the solution is always a sub-optimal solution due to the non-linear feature of the design problem itself. We will use an example to demonstrate that the improved iterSOCP minimax design results in more accurate design results than other design techniques such as the linear-programming design and other iterSOCP designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sugahara, K.: Linear Programming Design of IIR Digital Phase Networks. IECE Trans. J68–A(5), 444–450 (1985)

    Google Scholar 

  2. Ito, N., Deng, T.-L.: Generalized SOCP scheme for designing all-pass digital phase circuits. In: Proc. IEEE MICC 2013, pp. 255–258. IEEE Press, New York (2013)

    Google Scholar 

  3. Ito, N.: Phase-Correction-Network Design Using the SOCP Optimization Scheme. In: Proc. IEEE ISSNIP 2014, pp. 1–4. IEEE Press, New York (2014)

    Google Scholar 

  4. Deng, T.-B.: Novel Iterative Second-Order-Cone-Programming Scheme for Designing High-Accuracy Phase-Circuits. Journal of Circuits, Systems, and Computers 23(5), 1–14 (2014). World Scientific, Singapore

    Article  Google Scholar 

  5. Deng, T.-B.: Noniterative WLS Design of Allpass Variable Fractional-Delay Digital Filters. IEEE Trans. Circuits Syst. I, Reg. Papers 53(2), 358–371 (2006). IEEE Press, New York

    Article  Google Scholar 

  6. Deng, T.-B.: Generalized WLS Method for Designing Allpass Variable Fractional-Delay Digital Filters. IEEE Trans. Circuits Syst. I, Reg. Papers 56(10), 2207–2220 (2009). IEEE Press, New York

    Article  Google Scholar 

  7. Deng, T.-B.: Minimax Design of Low-Complexity Allpass Variable Fractional-Delay Digital Filters. IEEE Trans. Circuits Syst. I, Reg. Papers 57(8), 2075–2086 (2010). IEEE Press, New York

    Article  Google Scholar 

  8. Deng, T.-B.: Closed-Form Mixed Design of High-Accuracy All-Pass Variable Fractional-Delay Digital Filters. IEEE Trans. Circuits Syst. I, Reg. Papers 58(5), 1008–1019 (2011). IEEE Press, New York

    Article  Google Scholar 

  9. Deng, T.-B.: Discretization-Free Design of Variable Fractional-Delay FIR Digital Filters. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Processing 48(6), 637–644 (2001). IEEE Press, New York

    Article  Google Scholar 

  10. Deng, T.-B., Nakagawa, Y.: SVD-Based Design and New Structures for Variable Fractional-Delay Digital Filters. IEEE Trans. Signal Processing 52(9), 2513–2527 (2004). IEEE Press, New York

    Article  MathSciNet  Google Scholar 

  11. Deng, T.-B., Lian, Y.: Weighted-Least-Squares Design of Variable Fractional-Delay FIR Filters Using Coefficient-Symmetry. IEEE Trans. Signal Processing 54(8), 3023–3038 (2006). IEEE Press, New York

    Article  Google Scholar 

  12. Deng, T.-B.: Coefficient-Symmetries for Implementing Arbitrary-Order Lagrange-Type Variable Fractional-Delay Digital Filters. IEEE Trans. Signal Processing 55(8), 4078–4090 (2007). IEEE Press, New York

    Article  Google Scholar 

  13. Deng, T.-B.: Decoupling Minimax Design of Low-Complexity Variable Fractional-Delay FIR Digital Filters. IEEE Trans. Circuits Syst. I, Reg. Papers 58(10), 2398–2408 (2011). IEEE Press, New York

    Article  Google Scholar 

  14. Deng, T.-B.: Minimax Design of Low-Complexity Even-Order Variable Fractional-Delay Filters Using Second-Order Cone Programming. IEEE Trans. Circuits Syst. II, Exp. Briefs 58(10), 692–696 (2011). IEEE Press, New York

    Article  Google Scholar 

  15. Deng, T.-B., Chivapreecha, S., Dejhan, K.: Bi-minimax Design of Even-Order Variable Fractional-Delay FIR Digital Filters. IEEE Trans. Circuits Syst. I: Regular Papers 59(8), 1766–1774 (2012). IEEE Press, New York

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ito, N. (2015). High-Accuracy Phase-Equalizer for Communication-Channel Compensation. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9012. Springer, Cham. https://doi.org/10.1007/978-3-319-15705-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15705-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15704-7

  • Online ISBN: 978-3-319-15705-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics