Abstract
This paper fundamentally investigates the performance of evolutionary multiobjective optimization (EMO) algorithms for computationally hard 0–1 combinatorial optimization, where a strict theoretical analysis is generally out of reach due to the high complexity of the underlying problem. Based on the examination of problem features from a multiobjective perspective, we improve the understanding of the efficiency of a simple dominance-based EMO algorithm with unbounded archive for multiobjective NK-landscapes with correlated objective values. More particularly, we adopt a statistical approach, based on simple and multiple linear regression analysis, to enquire the expected running time of global SEMO with restart for identifying a \((1+\varepsilon )-\)approximation of the Pareto set for small-size enumerable instances. Our analysis provides further insights on the EMO search behavior and on the most important features that characterize the difficulty of an instance for this class of problems and algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)
Barnett, L.: Ruggedness and neutrality - the NKp family of fitness landscapes. In: Sixth International Conference on Artificial Life (ALIFE VI), pp. 18–27 (1998)
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, (2007)
Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the performance of iterated local search. In: Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 369–376 (2012)
Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 1689–1696 (2010)
Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: Methods & evaluation. Artif. Intell. 206, 79–111 (2014)
Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)
Knowles, J.D., Corne, D.W.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003)
Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Nat. Comput. 3(1), 37–51 (2004)
Liefooghe, A., Paquete, L., Figueira, J.R.: On local search for bi-objective knapsack problems. Evol Comput 21(1), 179–196 (2013)
Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: What makes an instance difficult for black-box 0–1 evolutionary multiobjective optimizers? In: Legrand, P., Corsini, M.-M., Hao, J.-K., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2013. LNCS, vol. 8752, pp. 3–15. Springer, Heidelberg (2013)
Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann. Math. Artif. Intell. 69(2), 151–182 (2013)
Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Symposium on Foundations of Computer Science (FOCS 2000), pp. 86–92 (2000)
Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective combinatorial optimization: An experimental analysis. In: Multiobjective Programming and Goal Programming, LNMES, vol. 618, pp. 69–77. Springer (2009)
Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)
Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)
Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Liefooghe, A., Verel, S., Daolio, F., Aguirre, H., Tanaka, K. (2015). A Feature-Based Performance Analysis in Evolutionary Multiobjective Optimization. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9019. Springer, Cham. https://doi.org/10.1007/978-3-319-15892-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-15892-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15891-4
Online ISBN: 978-3-319-15892-1
eBook Packages: Computer ScienceComputer Science (R0)