Skip to main content

Cancer—A Story on Fault Propagation in Gene-Cellular Networks

  • Chapter
  • First Online:
Propagation Phenomena in Real World Networks

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 85))

Abstract

We discuss problems related to propagation phenomena in biological networks. As an example we consider processes leading to carcinogenesis and development of cancer, seen as a complex genetic disease from a system theoretic point of view. We present particular regulatory mechanisms which make the cell cycle a fault tolerant system. Then we indicate weak points in this system leading to mutagenesis and cancer progression. The next stage in this cascade of events is related to an angiogenic switch, which in turn may be treated as a trigger of metastasis. All these processes result from communication, competition and subordination between normal and cancer cells. We illustrate interaction processes by models based on evolutionary games and spatial evolutionary games, which describe propagation phenomena in time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Airley, R.: Cancer Chemotherapy. Wiley-Blackwell, New York (2009)

    Google Scholar 

  2. Alberts, B.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  3. Anderson, A.R.A., Hassanein, M., Branch, K.M., Lu, J., Lobdell, N.A., Maier, J., Basanta, D., Weidow, B., Narasanna, A., Arteaga, C.L., Reynolds, A.B., Quaranta, V., Estrada, L., Weaver, A.M.: Microenvironmental independence associated with tumor progression. Cancer Res. 69(22), 8797–8806 (2009). doi:10.1158/0008-5472.CAN-09-0437. http://dx.doi.org/10.1158/0008-5472.CAN-09-0437

  4. Bach, L., Sumpter, D.J.T., Alsner, J., Loeschcke, V.: Spatial evolutionary games of interactions among generic cancer cells. J. Theor. Med. 5, 47–58 (2003)

    Article  MATH  Google Scholar 

  5. Bach, L.A., Bentzen, S.M., Alsner, J., Christiansen, F.B.: An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy. Eur. J. Cancer 37(16), 2116–2120 (2001)

    Article  Google Scholar 

  6. Baeriswyl, V., Christofori, G.: The angiogenic switch in carcinogenesis. Semin. Cancer. Biol. 19(5), 329–337 (2009). doi:10.1016/j.semcancer.2009.05.003. http://dx.doi.org/10.1016/j.semcancer.2009.05.003

  7. Ball, D.A., Adames, N.R., Reischmann, N., Barik, D., Franck, C.T., Tyson, J.J., Peccoud, J.: Measurement and modeling of transcriptional noise in the cell cycle regulatory network. Cell Cycle 12(19), 3203–3218 (2013). doi:10.4161/cc.26257. http://dx.doi.org/10.4161/cc.26257

  8. Basanta, D., Deutsch, A.: A game theoretical perspective on the somatic evolution of cancer. Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy. Springer, New York (2008)

    Google Scholar 

  9. Basanta, D., Gatenby, R.A., Anderson, A.R.A.: Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol. Pharm. 9(4), 914–921 (2012). doi:10.1021/mp200458e. http://dx.doi.org/10.1021/mp200458e

  10. Basanta, D., Scott, J.G., Rockne, R., Swanson, K.R., Anderson, A.R.A.: The role of idh1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view. Phys. Biol. 8(1), 015,016 (2011). doi:10.1088/1478-3975/8/1/015016. http://dx.doi.org/10.1088/1478-3975/8/1/015016

  11. Ben-Jacob, E., Coffey, D.S., Levine, H.: Bacterial survival strategies suggest rethinking cancer cooperativity. Trends Microbiol. 20(9), 403–410 (2012). doi:10.1016/j.tim.2012.06.001. http://dx.doi.org/10.1016/j.tim.2012.06.001

  12. Bottaro, D.P., Liotta, L.A.: Cancer: out of air is not out of action. Nature 423(6940), 593–595 (2003). doi:10.1038/423593a. http://dx.doi.org/10.1038/423593a

  13. Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K.W., Vogelstein, B., Nowak, M.A.: Accumulation of driver and passenger mutations during tumor progression. PNAS 107(43), 18545–18550 (2010). doi:10.1073/pnas.1010978107. http://dx.doi.org/10.1073/pnas.1010978107

  14. Branzei, D., Foiani, M.: Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9(4), 297–308 (2008). doi:10.1038/nrm2351. http://dx.doi.org/10.1038/nrm2351

  15. Brosh, R., Rotter, V.: When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9(10), 701–713 (2009). doi:10.1038/nrc2693. http://dx.doi.org/10.1038/nrc2693

  16. Brosh, R., Rotter, V.: Transcriptional control of the proliferation cluster by the tumor suppressor p53. Mol. Biosyst. 6(1), 17–29 (2010). doi:10.1039/b911416e. http://dx.doi.org/10.1039/b911416e

  17. Camidge, D., Jordell, D.: Introduction to the cellular and molecular theory of cancer, chapter 24: chemotherapy. Oxford University Press, Oxford (2005)

    Google Scholar 

  18. Cantley, L.C., Neel, B.G.: New insights into tumor suppression: pten suppresses tumor formation by restraining the phosphoinositide 3-kinase/akt pathway. Proc. Natl. Acad. Sci. USA 96(8), 4240–4245 (1999)

    Article  Google Scholar 

  19. Cha, H.J., Yim, H.: The accumulation of DNA repair defects is the molecular origin of carcinogenesis. Tumour Biol. 34(6), 3293–3302 (2013). doi:10.1007/s13277-013-1038-y. http://dx.doi.org/10.1007/s13277-013-1038-y

  20. Chen, Y.W., Chu, H.C., Ze-Shiang, L., Shiah, W.J., Chou, C.P., Klimstra, D.S., Lewis, B.C.: p16 stimulates cdc42-dependent migration of hepatocellular carcinoma cells. PLoS One 8(7), e69,389 (2013). doi:10.1371/journal.pone.0069389. http://dx.doi.org/10.1371/journal.pone.0069389

  21. Consortium, U.: Activities at the universal protein resource (uniprot). Nucl. Acids Res. 42(Database issue), D191–D198 (2014). doi:10.1093/nar/gkt1140. http://dx.doi.org/10.1093/nar/gkt1140

  22. Cooper, G., Hausman, R.: The Cell: A Molecular Approach, 6th edn. Sinauer Associates, Sunderland (2013)

    Google Scholar 

  23. Crespi, B., Summers, K.: Evolutionary biology of cancer. Trends Ecol. Evol. 20(10), 545–552 (2005). doi:10.1016/j.tree.2005.07.007. http://dx.doi.org/10.1016/j.tree.2005.07.007

  24. Csikasz-Nagy, A., Kapuy, O., Toth, A., Pal, C., Jensen, L.J., Uhlmann, F., Tyson, J.J., Novak, B.: Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation. Mol. Syst. Biol. 5, 236 (2009). doi:10.1038/msb.2008.73. http://dx.doi.org/10.1038/msb.2008.73

  25. de Miranda, N.F.C.C., Peng, R., Georgiou, K., Wu, C., Falk Sorqvist, E., Berglund, M., Chen, L., Gao, Z., Lagerstedt, K., Lisboa, S., Roos, F., van Wezel, T., Teixeira, M.R., Rosenquist, R., Sundstrom, C., Enblad, G., Nilsson, M., Zeng, Y., Kipling, D., Pan-Hammarstrom, Q.: DNA repair genes are selectively mutated in diffuse large b cell lymphomas. J. Exp. Med. 210(9), 1729–1742 (2013). doi:10.1084/jem.20122842. http://dx.doi.org/10.1084/jem.20122842

  26. Denayer, E., de Ravel, T., Legius, E.: Clinical and molecular aspects of Ras related disorders. J. Med. Genet. 45(11), 695–703 (2008). doi:10.1136/jmg.2007.055772. http://dx.doi.org/10.1136/jmg.2007.055772

  27. Derouiche, A., Cousin, C., Mijakovic, I.: Protein phosphorylation from the perspective of systems biology. Curr. Opin. Biotechnol. 23(4), 585–590 (2012). doi:10.1016/j.copbio.2011.11.008. http://dx.doi.org/10.1016/j.copbio.2011.11.008

  28. Dingli, D., Chalub, F.A.C.C., Santos, F.C., Van Segbroeck, S., Pacheco, J.M.: Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br. J. Cancer 101(7), 1130–1136 (2009). doi:10.1038/sj.bjc.6605288. http://dx.doi.org/10.1038/sj.bjc.6605288

  29. d’Onofrio, A., Gandolfi, A.: Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264(2), 253–265 (2010). doi:10.1016/j.jtbi.2010.01.023. http://dx.doi.org/10.1016/j.jtbi.2010.01.023

  30. Dvorak, H.F.: Tumors: wounds that do not heal. similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315(26), 1650–1659 (1986). doi:10.1056/NEJM198612253152606. http://dx.doi.org/10.1056/NEJM198612253152606

  31. Elias, J., Dimitrio, L., Clairambault, J., Natalini, R.: The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate. Biochim. Biophys. Acta 1844(1 Pt B), 232–247 (2014). doi:10.1016/j.bbapap.2013.09.019. http://dx.doi.org/10.1016/j.bbapap.2013.09.019

  32. Fan, Y., Mao, R., Yang, J.: Nf-kappab and stat3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3), 176–185 (2013). doi:10.1007/s13238-013-2084-3. http://dx.doi.org/10.1007/s13238-013-2084-3

  33. Feng, Z., Chen, J., Wei, H., Gao, P., Shi, J., Zhang, J., Zhao, F.: The risk factor of gallbladder cancer: hyperplasia of mucous epithelium caused by gallstones associates with p16/cyclind1/cdk4 pathway. Exp. Mol. Pathol. 91(2), 569–577 (2011). doi:10.1016/j.yexmp.2011.06.004. http://dx.doi.org/10.1016/j.yexmp.2011.06.004

  34. Fisher, J.C.: Multiple-mutation theory of carcinogenesis. Nature 181(4609), 651–652 (1958)

    Article  Google Scholar 

  35. Folkman, J.: Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186 (1971). doi:10.1056/NEJM197111182852108. http://dx.doi.org/10.1056/NEJM197111182852108

  36. Fujarewicz, K.: Planning identification experiments for cell signaling pathways—an nfkb case study. Int. J. Appl. Math. Comp. Sci. 20(4), 773–780 (2010)

    MATH  Google Scholar 

  37. Fujarewicz, K., Kimmel, M., Lipniacki, T., Świerniak, A.: Adjoint systems for models of cell signaling pathways and their application to parameter fitting. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3), 322–335 (2007). doi:10.1109/tcbb.2007.1016. http://dx.doi.org/10.1109/tcbb.2007.1016

  38. Gatenby, R.A., Vincent, T.L.: An evolutionary model of carcinogenesis. Cancer Res. 63(19), 6212–6220 (2003)

    Google Scholar 

  39. Gautschi, O., Ratschiller, D., Gugger, M., Betticher, D.C., Heighway, J.: Cyclin d1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer 55(1), 1–14 (2007). doi:10.1016/j.lungcan.2006.09.024. http://dx.doi.org/10.1016/j.lungcan.2006.09.024

  40. Gerstung, M., Nakhoul, H., Beerenwinkel, N.: Evolutionary games with affine fitness functions: applications to cancer. Dyn. Games Appl. 1, 370–385 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Girard, P.M., Foray, N., Stumm, M., Waugh, A., Riballo, E., Maser, R.S., Phillips, W.P., Petrini, J., Arlett, C.F., Jeggo, P.A.: Radiosensitivity in nijmegen breakage syndrome cells is attributable to a repair defect and not cell cycle checkpoint defects. Cancer Res. 60(17), 4881–4888 (2000)

    Google Scholar 

  42. Glisovic, T., Bachorik, J.L., Yong, J., Dreyfuss, G.: Rna-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582(14), 1977–1986 (2008). doi:10.1016/j.febslet.2008.03.004. http://dx.doi.org/10.1016/j.febslet.2008.03.004

  43. Gluick, T., Yuan, Z., Libutti, S.K., Marx, S.J.: Mutations in cdkn2c (p18) and cdkn2d (p19) may cause sporadic parathyroid adenoma. Endocr. Relat. Cancer 20(6), L27–L29 (2013). doi:10.1530/ERC-13-0445. http://dx.doi.org/10.1530/ERC-13-0445

  44. Goel, S., Duda, D.G., Xu, L., Munn, L.L., Boucher, Y., Fukumura, D., Jain, R.K.: Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91(3), 1071–1121 (2011). doi:10.1152/physrev.00038.2010. http://dx.doi.org/10.1152/physrev.00038.2010

  45. Han, W., Yu, K.N.: Ionizing Radiation, DNA Double Strand Reak and Mutation. Advances in Genetics Research. Nova Science Publishers, New York (2010)

    Google Scholar 

  46. Hanahan, D., Folkman, J.: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3), 353–364 (1996)

    Article  Google Scholar 

  47. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Article  Google Scholar 

  48. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). doi:10.1016/j.cell.2011.02.013. http://dx.doi.org/10.1016/j.cell.2011.02.013

  49. Hanel, W., Moll, U.M.: Links between mutant p53 and genomic instability. J. Cell Biochem. 113(2), 433–439 (2012). doi:10.1002/jcb.23400. http://dx.doi.org/10.1002/jcb.23400

  50. Harris, S.L., Levine, A.J.: The p53 pathway: positive and negative feedback loops. Oncogene 24(17), 2899–2908 (2005). doi:10.1038/sj.onc.1208615. http://dx.doi.org/10.1038/sj.onc.1208615

  51. Haupt, Y., Maya, R., Kazaz, A., Oren, M.: Mdm2 promotes the rapid degradation of p53. Nature 387(6630), 296–299 (1997). doi:10.1038/387296a0. http://dx.doi.org/10.1038/387296a0

  52. Hemnani, T., Parihar, M.S.: Reactive oxygen species and oxidative DNA damage. Indian J. Physiol. Pharmacol. 42(4), 440–452 (1998)

    Google Scholar 

  53. Hofbauer, J., Shuster, P., Sigmund, K.: Replicator dynamics. J. Theor. Biol. 100, 533–538 (1979)

    Google Scholar 

  54. Howell, G.M., Hodak, S.P., Yip, L.: Ras mutations in thyroid cancer. Oncologist 18(8), 926–932 (2013). doi:10.1634/theoncologist.2013-0072. http://dx.doi.org/10.1634/theoncologist.2013-0072

  55. Iwamoto, K., Hamada, H., Eguchi, Y., Okamoto, M.: Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination. Biosystems 103(3), 384–391 (2011). doi:10.1016/j.biosystems.2010.11.011. http://dx.doi.org/10.1016/j.biosystems.2010.11.011

  56. Iwamoto, K., Hamada, H., Okamoto, M.: Mechanism of cell cycle disruption by multiple p53 pulses. Genome Inform. 25(1), 12–24 (2011)

    Google Scholar 

  57. Jain, R.K.: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706), 58–62 (2005). doi:10.1126/science.1104819. http://dx.doi.org/10.1126/science.1104819

  58. Johnson, L.N.: The regulation of protein phosphorylation. Biochem. Soc. Trans. 37(Pt 4), 627–641 (2009). doi:10.1042/BST0370627. http://dx.doi.org/10.1042/BST0370627

  59. Jonak, K., Kurpas, M., Puszyński, K.: Prediction of the Behavior of Mammalian Cells after Exposure to Ionizing Radiation Based on the New Mathematical Model of ATM-Mdm2-p53 Regulatory Pathway. Information Technologies in Biomedicine. Springer, Berlin (2014)

    Google Scholar 

  60. Kohn, K., Bohr, V.: Genomic Instability and DNA Repair. The Cancer Handbook. Wiley, New York (2005). doi:10.1002/0470025077.chap07

  61. Król, D.: Propagation phenomenon in complex networks: theory and practice. New Gener. Comput. 32(3–4), 187–192 (2014)

    Article  Google Scholar 

  62. Krześlak, M., Świerniak, A.: Spatial evolutionary games and radiation induced bystander effect. Arch. Contr. Sci. 21, 135–150 (2011)

    MATH  Google Scholar 

  63. Ledoux, A., Perkins, N.D.: Nf-kappab and the cell cycle. Biochem. Soc. Trans. 42(1), 76–81 (2014). doi:10.1042/BST20130156. http://dx.doi.org/10.1042/BST20130156

  64. Loeb, L.A.: Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51(12), 3075–3079 (1991)

    Google Scholar 

  65. Lord, C.J., Ashworth, A.: The DNA damage response and cancer therapy. Nature 481(7381), 287–294 (2012). doi:10.1038/nature10760. http://dx.doi.org/10.1038/nature10760

  66. Mansury, Y., Diggory, M., Deisboeck, T.: Evolutionary game theory in an agent-based brain tumor model: exploring the genotype-phenotype link. J. Theor. Biol. 238, 145–156 (2006)

    Article  MathSciNet  Google Scholar 

  67. Marciniak-Czochra, A., Kimmel, M.: Reaction-diffusion approach to modeling of the spread of early tumors along linear or tubular structures. J. Theor. Biol. 244(3), 375–387 (2007). doi:10.1016/j.jtbi.2006.08.021. http://dx.doi.org/10.1016/j.jtbi.2006.08.021

  68. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  69. Maynard Smith, J., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  70. Merlo, L.M.F., Pepper, J.W., Reid, B.J., Maley, C.C.: Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6(12), 924–935 (2006). doi:10.1038/nrc2013. http://dx.doi.org/10.1038/nrc2013

  71. Molatore, S., Kiermaier, E., Jung, C.B., Lee, M., Pulz, E., Hofler, H., Atkinson, M.J., Pellegata, N.S.: Characterization of a naturally-occurring p27 mutation predisposing to multiple endocrine tumors. Mol. Cancer 9, 116 (2010). doi:10.1186/1476-4598-9-116. http://dx.doi.org/10.1186/1476-4598-9-116

  72. Moll, U.M., Petrenko, O.: The mdm2-p53 interaction. Mol. Cancer Res. 1(14), 1001–1008 (2003)

    Google Scholar 

  73. Naugler, W.E., Karin, M.: Nf-kappab and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev. 18(1), 19–26 (2008). doi:10.1016/j.gde.2008.01.020. http://dx.doi.org/10.1016/j.gde.2008.01.020

  74. von Neumann, J.: Theory of self producing automata. University of Illinois Press, Champaign (1966)

    Google Scholar 

  75. Neurath, H., Walsh, K.A.: Role of proteolytic enzymes in biological regulation (a review). PNAS 73(11), 3825–3832 (1976)

    Article  Google Scholar 

  76. Nishida, N., Yano, H., Nishida, T., Kamura, T., Kojiro, M.: Angiogenesis in cancer. Vasc. Health Risk Manag. 2(3), 213–219 (2006)

    Article  Google Scholar 

  77. Pietenpol, J.A., Stewart, Z.A.: Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182, 475–481 (2002)

    Article  Google Scholar 

  78. Pomerening, J.R.: Positive-feedback loops in cell cycle progression. FEBS Lett. 583(21), 3388–3396 (2009). doi:10.1016/j.febslet.2009.10.001. http://dx.doi.org/10.1016/j.febslet.2009.10.001

  79. Pruitt, K.D., Brown, G.R., Hiatt, S.M., Thibaud-Nissen, F., Astashyn, A., Ermolaeva, O., Farrell, C.M., Hart, J., Landrum, M.J., McGarvey, K.M., Murphy, M.R., O’Leary, N.A., Pujar, S., Rajput, B., Rangwala, S.H., Riddick, L.D., Shkeda, A., Sun, H., Tamez, P., Tully, R.E., Wallin, C., Webb, D., Weber, J., Wu, W., DiCuccio, M., Kitts, P., Maglott, D.R., Murphy, T.D., Ostell, J.M.: Refseq: an update on mammalian reference sequences. Nucl. Acids Res. 42(Database issue), D756–D763 (2014). doi:10.1093/nar/gkt1114. http://dx.doi.org/10.1093/nar/gkt1114

  80. Puszyński, K., Hat, B., Lipniacki, T.: Oscillations and bistability in the stochastic model of p53 regulation. J. Theor. Biol. 254(2), 452–465 (2008). doi:10.1016/j.jtbi.2008.05.039. http://dx.doi.org/10.1016/j.jtbi.2008.05.039

  81. Puszyński, K., Jaksik, R., Świerniak, A.: Regulation of p53 by sirna in radiation treated cells: simulation studies. Int. J. Appl. Math. Comp. Sci. 22(4), 1011–1018 (2012). doi:10.2478/v10006-012-0075-9. http://dx.doi.org/10.2478/v10006-012-0075-9

  82. Roman, A., Munger, K.: The papillomavirus e7 proteins. Virology 445(1–2), 138–168 (2013). doi:10.1016/j.virol.2013.04.013. http://dx.doi.org/10.1016/j.virol.2013.04.013

  83. Saier, M.: Classification of Transmembrane Transport Systems in Living Organisms. Biomembrane Transport. Academic Press, San Diego (1999)

    Google Scholar 

  84. Shiloh, Y.: ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3(3), 155–168 (2003). doi:10.1038/nrc1011. http://dx.doi.org/10.1038/nrc1011

  85. Sigmund, K., Nowak, M.A.: Evolutionary game theory. Curr. Biol. 9(14), R503–R505 (1999)

    Article  Google Scholar 

  86. Sinha, R.P., Hader, D.P.: Uv-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1(4), 225–236 (2002)

    Article  Google Scholar 

  87. Śmieja, J., Jamaluddin, M., Brasier, A.R., Kimmel, M.: Model-based analysis of interferon-beta induced signaling pathway. Bioinformatics 24(20), 2363–2369 (2008). doi:10.1093/bioinformatics/btn400. http://dx.doi.org/10.1093/bioinformatics/btn400

  88. Solomon, H., Madar, S., Rotter, V.: Mutant p53 gain of function is interwoven into the hallmarks of cancer. J. Pathol. 225(4), 475–478 (2011). doi:10.1002/path.2988. http://dx.doi.org/10.1002/path.2988

  89. Steinbrunn, T., Stuhmer, T., Gattenlohner, S., Rosenwald, A., Mottok, A., Unzicker, C., Einsele, H., Chatterjee, M., Bargou, R.C.: Mutated ras and constitutively activated akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood 117(6), 1998–2004 (2011). doi:10.1182/blood-2010-05-284422. http://dx.doi.org/10.1182/blood-2010-05-284422

  90. Świerniak, A.: Combined anticancer therapy as a control problem. Advances in Control Theory and Automation, Monograph of Committee of Automatics and Robotics PAS. Commitee on Automatic Control and Robotics Polish Academy of Science (2012)

    Google Scholar 

  91. Świerniak, A., Kimmel, M., Śmieja, J.: Mathematical modeling as a tool for planning anticancer therapy. Eur. J. Pharmacol. 625(1–3), 108–121 (2009). doi:10.1016/j.ejphar.2009.08.041. http://dx.doi.org/10.1016/j.ejphar.2009.08.041

  92. Świerniak, A., Krześlak, M.: Game theoretic approach to mathematical modeling of radiation induced bystander effect. In: Proceedings of 16th National Conference on Applications of Mathematics in Biology and Medicine, Krynica (2010)

    Google Scholar 

  93. Świerniak, A., Krześlak, M.: Application of evolutionary games to modeling carcinogenesis. Math. Biosci. Eng. 10(3), 873–911 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  94. Takashima, A., Faller, D.V.: Targeting the ras oncogene. Exp. Opin. Ther. Targets 17(5), 507–531 (2013). doi:10.1517/14728222.2013.764990. http://dx.doi.org/10.1517/14728222.2013.764990

  95. Todeschini, A.L., Georges, A., Veitia, R.A.: Transcription factors: specific DNA binding and specific gene regulation. Trends Genet. 1–9 (2014) (in press). doi:10.1016/j.tig.2014.04.002. http://dx.doi.org/10.1016/j.tig.2014.04.002

  96. Tomlinson, I.P.: Game-theory models of interactions between tumour cells. Eur. J. Cancer 33(9), 1495–1500 (1997)

    Article  MathSciNet  Google Scholar 

  97. Tomlinson, I.P., Bodmer, W.F.: Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models. PNAS 92(24), 11130–11134 (1995)

    Article  Google Scholar 

  98. Tomlinson, I.P., Bodmer, W.F.: Modelling the consequences of interactions between tumour cells. Br. J. Cancer 75(2), 157–160 (1997)

    Article  Google Scholar 

  99. Tyson, J.J., Novak, B.: Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem. 61, 219–240 (2010). doi:10.1146/annurev.physchem.012809.103457. http://dx.doi.org/10.1146/annurev.physchem.012809.103457

  100. Ulanet, D.B., Hanahan, D.: Loss of p19(arf) facilitates the angiogenic switch and tumor initiation in a multi-stage cancer model via p53-dependent and independent mechanisms. PLoS One 5(8), e12,454 (2010). doi:10.1371/journal.pone.0012454. http://dx.doi.org/10.1371/journal.pone.0012454

  101. van Moorselaar, R.J.A., Voest, E.E.: Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol. Cell Endocrinol. 197(1–2), 239–250 (2002)

    Article  Google Scholar 

  102. Wang, E., Lenferink, A., O’Connor-McCourt, M.: Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol. Life Sci. 64(14), 1752–1762 (2007). doi:10.1007/s00018-007-7054-6. http://dx.doi.org/10.1007/s00018-007-7054-6

  103. Ward, A.F., Braun, B.S., Shannon, K.M.: Targeting oncogenic ras signaling in hematologic malignancies. Blood 120(17), 3397–3406 (2012). doi:10.1182/blood-2012-05-378596. http://dx.doi.org/10.1182/blood-2012-05-378596

  104. Warfel, N.A., El-Deiry, W.S.: p21waf1 and tumourigenesis: 20 years after. Curr. Opin. Oncol. 25(1), 52–58 (2013). doi:10.1097/CCO.0b013e32835b639e. http://dx.doi.org/10.1097/CCO.0b013e32835b639e

  105. White, E.: Exploiting the bad eating habits of ras-driven cancers. Genes Dev. 27(19), 2065–2071 (2013). doi:10.1101/gad.228122.113. http://dx.doi.org/10.1101/gad.228122.113

  106. Yamazaki, D., Kurisu, S., Takenawa, T.: Regulation of cancer cell motility through actin reorganization. Cancer Sci. 96(7), 379–386 (2005). doi:10.1111/j.1349-7006.2005.00062.x. http://dx.doi.org/10.1111/j.1349-7006.2005.00062.x

  107. Zetter, B.R.: Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407–424 (1998). doi:10.1146/annurev.med.49.1.407. http://dx.doi.org/10.1146/annurev.med.49.1.407

  108. Zhao, W., Huang, C.C., Otterson, G.A., Leon, M.E., Tang, Y., Shilo, K., Villalona, M.A.: Altered p16(ink4) and rb1 expressions are associated with poor prognosis in patients with nonsmall cell lung cancer. J. Oncol. 2012, 957,437 (2012). doi:10.1155/2012/957437. http://dx.doi.org/10.1155/2012/957437

  109. Zilfou, J.T., Lowe, S.W.: Tumor suppressive functions of p53. Cold Spring Harb. Perspect Biol. 1(5), a001,883 (2009). doi:10.1101/cshperspect.a001883. http://dx.doi.org/10.1101/cshperspect.a001883

Download references

Acknowledgments

We would like to thank Joanna Rzeszowska and Maria Wideł for their valuable biological insight and consultations. This work was partially supported by National Science Centre, Poland, grants DEC-2012/04/A/ST7/00353 (AS, JS, RJ, MK), 2011/03/B/ST6/04384 (DB). Numerical experiments and simulations were performed on the Ziemowit computational cluster (http://www.ziemowit.hpc.polsl.pl/) in the Laboratory of Bioinformatics and Computational Biology, The Biotechnology, Bioengineering and Bioinformatics Centre Silesian BIO-FARMA, created in the POIG.02.01.00-00-166/08 and expanded in the POIG.02.03.01-00-040/13 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Świerniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borys, D., Jaksik, R., Krześlak, M., Śmieja, J., Świerniak, A. (2015). Cancer—A Story on Fault Propagation in Gene-Cellular Networks. In: Król, D., Fay, D., Gabryś, B. (eds) Propagation Phenomena in Real World Networks. Intelligent Systems Reference Library, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-319-15916-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15916-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15915-7

  • Online ISBN: 978-3-319-15916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics