Abstract
In Guided Evolutionary Multi-objective Optimization the goal is to find a diverse, but locally focused non-dominated front in a decision maker’s area of interest, as close as possible to the true Pareto-front. The optimization can focus its efforts towards the preferred area and achieve a better result [7, 9, 13, 17]. The modeled and simulated systems are often stochastic and a common method to handle the objective noise is Resampling. The given preference information allows to define better resampling strategies which further improve the optimization result. In this paper, resampling strategies are proposed that base the sampling allocation on multiple factors, and thereby combine multiple resampling strategies proposed by the authors in [15]. These factors are, for example, the Pareto-rank of a solution and its distance to the decision maker’s area of interest. The proposed hybrid Dynamic Resampling Strategy DR2 is evaluated on the Reference point-guided NSGA-II optimization algorithm (R-NSGA-II) [9].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartz-Beielstein, T., Blum, D., and Branke, J.: Particle swarm optimization and sequential sampling in noisy environments. Metaheuristics - Progress in Complex Systems Optimization, 261–273 (2007)
Branke, J., Gamer, J.: Efficient sampling in interactive multi-criteria selection. In: Proceedings of the 2007 INFORMS Simulation Society Research Workshop, 42–46 (2007)
Branke, J., Schmidt, C.: Sequential Sampling in Noisy Environments. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 202–211. Springer, Heidelberg (2004)
Chen, C.H., He, D., Fu, M., Lee, L.H.: Efficient Simulation Budget Allocation for Selecting an Optimal Subset. Informs Journal on Computing 20(4), 579–595 (2008)
Deb, K.: Multi-Objective Opimization using Evolutionary Algorithms. John Wiley & Sons (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Deb, K., Sinha, A., Korhonen, P.J., Wallenius, J.: An interactive evolutionary multi-objective optimization method based on progressively approximated value functions. IEEE Transactions on Evolutionary Computation 14(5), 723–739 (2010)
Deb, K., Siegmund, F., Ng, A.H.C.: R-HV : A metric for computing hyper-volume for reference point based EMOs. Accepted for publication at the International Conference on Swarm, Evolutionary, and Memetic Computing 2014, Bhubaneswar, Odisha, India (2014)
Deb, K., Sundar, J., Bhaskara Rao, N.U., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. International Journal of Computational Intelligence Research 2(3), 273–286 (2006)
Di Pietro, A.: Optimizing Evolutionary Strategies for Problems with Varying Noise Strength. University of Western Australia, Perth, PhD-thesis (2007)
Di Pietro, A., While, L., and Barone, L.: Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions. Congress on Evolutionary Computation 2004, vol. 2, 1254–1261 (2004)
Jin, Y., and Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Transactions on Evolutionary Computation 9(3), pp. 303–317 (2005). ISSN 1089–778X
Siegmund, F., Bernedixen, J., Pehrsson, L., Ng, A.H.C., Deb, K.: Reference point-based Evolutionary Multi-objective Optimization for Industrial Systems Simulation. In: Proceedings of the Winter Simulation Conference 2012, Berlin, Germany (2012). ISBN 978-1-4673-4781-5
Siegmund, F., Ng, A. H.C., Deb, K.: Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls. In: Proceedings of the IEEE Congress on Evolutionary Computation 2012, Brisbane, Australia, pp. 2417–2424 (2012). ISBN 978-1-4673-1508-1
Siegmund, F., Ng, A. H.C., Deb, K.: A Comparative Study of Dynamic Resampling Strategies for Guided Evolutionary Multi-Objective Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation 2013, Cancún, Mexico, pp. 1826–1835 (2013). ISBN 978-1-4799-0454-9
Siegmund, F., Ng, A. H.C., Deb, K.: Dynamic Resampling Strategies for Guided EMO of Stochastic Systems - Part1. European Journal of Operational Research - EJOR, in preparation for submission (2015)
Stump, G., Simpson, T. W., Donndelinger, J.A., Lego, S., Yukish, M.: Visual Steering Commands for Trade Space Exploration: User-Guided Sampling With Example. Journal of Computing and Information Science in Engineering 9(4), pp. 044501:1–10 (2009). ISSN 1530–9827
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)
Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. Parallel Problem Solving from Nature V, 292–301 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Siegmund, F., Ng, A.H.C., Deb, K. (2015). Hybrid Dynamic Resampling for Guided Evolutionary Multi-Objective Optimization. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-15934-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15933-1
Online ISBN: 978-3-319-15934-8
eBook Packages: Computer ScienceComputer Science (R0)