Skip to main content

Hybrid Dynamic Resampling for Guided Evolutionary Multi-Objective Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9018))

Included in the following conference series:

  • 2042 Accesses

Abstract

In Guided Evolutionary Multi-objective Optimization the goal is to find a diverse, but locally focused non-dominated front in a decision maker’s area of interest, as close as possible to the true Pareto-front. The optimization can focus its efforts towards the preferred area and achieve a better result [7, 9, 13, 17]. The modeled and simulated systems are often stochastic and a common method to handle the objective noise is Resampling. The given preference information allows to define better resampling strategies which further improve the optimization result. In this paper, resampling strategies are proposed that base the sampling allocation on multiple factors, and thereby combine multiple resampling strategies proposed by the authors in [15]. These factors are, for example, the Pareto-rank of a solution and its distance to the decision maker’s area of interest. The proposed hybrid Dynamic Resampling Strategy DR2 is evaluated on the Reference point-guided NSGA-II optimization algorithm (R-NSGA-II) [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartz-Beielstein, T., Blum, D., and Branke, J.: Particle swarm optimization and sequential sampling in noisy environments. Metaheuristics - Progress in Complex Systems Optimization, 261–273 (2007)

    Google Scholar 

  2. Branke, J., Gamer, J.: Efficient sampling in interactive multi-criteria selection. In: Proceedings of the 2007 INFORMS Simulation Society Research Workshop, 42–46 (2007)

    Google Scholar 

  3. Branke, J., Schmidt, C.: Sequential Sampling in Noisy Environments. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 202–211. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chen, C.H., He, D., Fu, M., Lee, L.H.: Efficient Simulation Budget Allocation for Selecting an Optimal Subset. Informs Journal on Computing 20(4), 579–595 (2008)

    Article  Google Scholar 

  5. Deb, K.: Multi-Objective Opimization using Evolutionary Algorithms. John Wiley & Sons (2001)

    Google Scholar 

  6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Sinha, A., Korhonen, P.J., Wallenius, J.: An interactive evolutionary multi-objective optimization method based on progressively approximated value functions. IEEE Transactions on Evolutionary Computation 14(5), 723–739 (2010)

    Article  Google Scholar 

  8. Deb, K., Siegmund, F., Ng, A.H.C.: R-HV : A metric for computing hyper-volume for reference point based EMOs. Accepted for publication at the International Conference on Swarm, Evolutionary, and Memetic Computing 2014, Bhubaneswar, Odisha, India (2014)

    Google Scholar 

  9. Deb, K., Sundar, J., Bhaskara Rao, N.U., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. International Journal of Computational Intelligence Research 2(3), 273–286 (2006)

    Article  MathSciNet  Google Scholar 

  10. Di Pietro, A.: Optimizing Evolutionary Strategies for Problems with Varying Noise Strength. University of Western Australia, Perth, PhD-thesis (2007)

    Google Scholar 

  11. Di Pietro, A., While, L., and Barone, L.: Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions. Congress on Evolutionary Computation 2004, vol. 2, 1254–1261 (2004)

    Google Scholar 

  12. Jin, Y., and Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Transactions on Evolutionary Computation 9(3), pp. 303–317 (2005). ISSN 1089–778X

    Google Scholar 

  13. Siegmund, F., Bernedixen, J., Pehrsson, L., Ng, A.H.C., Deb, K.: Reference point-based Evolutionary Multi-objective Optimization for Industrial Systems Simulation. In: Proceedings of the Winter Simulation Conference 2012, Berlin, Germany (2012). ISBN 978-1-4673-4781-5

    Google Scholar 

  14. Siegmund, F., Ng, A. H.C., Deb, K.: Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls. In: Proceedings of the IEEE Congress on Evolutionary Computation 2012, Brisbane, Australia, pp. 2417–2424 (2012). ISBN 978-1-4673-1508-1

    Google Scholar 

  15. Siegmund, F., Ng, A. H.C., Deb, K.: A Comparative Study of Dynamic Resampling Strategies for Guided Evolutionary Multi-Objective Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation 2013, Cancún, Mexico, pp. 1826–1835 (2013). ISBN 978-1-4799-0454-9

    Google Scholar 

  16. Siegmund, F., Ng, A. H.C., Deb, K.: Dynamic Resampling Strategies for Guided EMO of Stochastic Systems - Part1. European Journal of Operational Research - EJOR, in preparation for submission (2015)

    Google Scholar 

  17. Stump, G., Simpson, T. W., Donndelinger, J.A., Lego, S., Yukish, M.: Visual Steering Commands for Trade Space Exploration: User-Guided Sampling With Example. Journal of Computing and Information Science in Engineering 9(4), pp. 044501:1–10 (2009). ISSN 1530–9827

    Google Scholar 

  18. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  19. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. Parallel Problem Solving from Nature V, 292–301 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Siegmund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Siegmund, F., Ng, A.H.C., Deb, K. (2015). Hybrid Dynamic Resampling for Guided Evolutionary Multi-Objective Optimization. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15934-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15933-1

  • Online ISBN: 978-3-319-15934-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics