G3Di: A Gaming Interaction Dataset with a
Real Time Detection and Evaluation Framework

Victoria Bloom®), Vasileios Argyriou, and Dimitrios Makris

Kingston University, London, UK
{Victoria.Bloom,Vasileios.Argyriou,D.Makris}@kingston.ac.uk

Abstract. This paper presents a new, realistic and challenging human
interaction dataset for multiplayer gaming, containing synchronised
colour, depth and skeleton data. In contrast to existing datasets where
the interactions are scripted, G3Di was captured using a novel game-
sourcing method so the movements are more realistic. Our detection
framework decomposes interactions into the actions of each person to
infer the interaction in real time. This modular approach is applicable
to a virtual environment where the interaction between people occurs
through a computer interface. We also propose an evaluation metric for
real time applications, which assesses both the accuracy and latency of
the interactions. Experimental results indicate higher complexity of the
new dataset in comparison to existing gaming datasets.
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1 Introduction

Recognising human interaction is a very active research area in the field of
computer vision and is key to a range of domains including security, enter-
tainment and robotics. The goal of interaction recognition is to automatically
detect human interactions in a sequence of observations. Conceptually, a two
person interaction is composed of a pair of two single actions, an action and a
counter action [14]. In traditional human interaction, people physically interact
with each other like in a real boxing match. Recent technological developments,
such as low cost depth sensors, have enabled a new form of interaction which is
virtual, for example a full body boxing game illustrated in Fig. 1.

This new generation of games use the human body as the controller and have
increased the appeal of gaming to family members of all ages. Multiplayer sports
games encourage people to interact with other players across the globe or friends
and family in the same living room. The interactions can be collaborative or
competitive depending on the specific sport and game mode. Boxing is naturally
a competitive sport but team sports can be played either collaboratively with
friends on the same team or competitively with friends on the opposing team.
For example, one can play table tennis alongside a friend in a doubles match
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Fig. 1. Boxing interactions: A real attack (left) occurs when one person actually
punches the other person, whereas a virtual attack (right) occurs when one person
punches in the direction of the computer screen

or against a friend in a singles match. The players can act simultaneously or
after a short delay depending on the sport. For example, in boxing the actions
are concurrent but other sports such as table tennis have a delay between one
person acting and the other reacting.

Past research has typically focused on recognising interactions from colour
sequences but the recent release of low cost depth sensors combined with a real
time pose estimation algorithm has seen the rapid growth of research on depth
and skeleton data. Each modality has advantages and disadvantages: colour and
depth data contain contextual information but are both dependent on the camera
view and the persons’ appearance. Depth and skeleton data are more robust
than colour data when there are a lot of illumination changes and can even
work in total darkness. Skeleton data is both invariant to the camera location
and subject appearance, but lacks contextual information and does not work
well when the player is not standing or sitting upright. Fusing colour and depth
has overcome some limitations of the individual modalities but most current
algorithms consider the depth and colour channels independently [2]. The new
multimodal dataset presented in this paper with synchronised colour, depth and
skeleton data can provide the opportunity to develop algorithms with improved
fusion of the different modalities towards producing more robust algorithms that
have a wider range of applications.

The contributions of this paper are a realistic and challenging human inter-
action 3D dataset with a real time detection and evaluation framework. G3Di
is a novel multiplayer gaming dataset containing synchronised colour, depth
and skeleton data. In contrast to existing datasets the movements are much
more complex and realistic. Our new interaction framework recognises individ-
ual actions as they occur to infer the interaction in real time. We also propose
an evaluation metric for real time applications which assesses both the accuracy
and latency of the interactions.
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2 Related Work

Human interactions are composed of actions therefore we review existing
datasets, recognition algorithms and evaluation metrics at both the action and
interaction levels of the activity hierarchy.

2.1 Datasets

Historically, human activity datasets were recorded with visible light cameras
and consist only of colour data [9] [15] [16] . For a comprehensive review of these
also see Aggarwal and Ryoo [1]. The major problem with colour data of human
motion is that there is a considerable loss of information [2]. After the recent
release of low cost depth sensors there has been a growth of 3D datasets that
provide skeleton data with some also providing colour and/or depth data [4] [6]
7] [11] [12] [18] [20]

However, most 3D datasets are restricted to activities performed by a single
human subject which subsequently limits the development of 3D recognition
algorithms to a single person [2] [4] [7] [11] [18]. The problem with the existing
3D gaming datasets, MSRAction3D [11], MSRC-12 [7] and G3D [4] is that they
are single player, whereas commercial games are often multiplayer.

Another major limitation of the existing gaming datasets is that the scenarios
were scripted so the movements are not realistic. In scripted datasets, the partic-
ipants were instructed beforehand on how and when to perform the actions. Fur-
thermore, in the MSR Action3D and MSRC-12 datasets each sequence contains
only a single action class and the transition between repetitions often includes
the neutral position. The G3D dataset contains more realistic gaming scenarios
as there are multiple action classes in a sequence, but as there is a delay between
actions the subject often returns to the neutral position when changing action.
In fast paced competitive games like boxing, players do not return to the neutral
position between actions which creates complex action transitions.

The key features of the gaming 3D datasets are illustrated in Table 1. The
table was ordered on the number of data sources provided which increases by row.
G3D is the only existing gaming dataset to contain all three modalities (colour,
depth and skeleton data). The SBU [20] and K3HI [10] traditional person to
person interaction datasets contain all three modalities but in both of these
datasets the people were captured from a side view and partially clipped, which
created noisy and unreliable skeleton data.

To overcome the limitations of the current datasets we propose a new mul-
tiplayer gaming dataset, G3Di with synchronised colour, depth and skeleton.
The people were captured from the front view and interacted indirectly with
each other through a computer interface. Sports games introduced the element
of competition between the players so the actions captured were more realistic
and challenging in comparison to scripted actions.
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Table 1. Comparison of 3D gaming datasets

Dataset Classes Subjects Data Instruction  Scenario
sources Modality

MSRC-12 (7] 12 30 Skeleton Scripted Actions

MSRAction3D [11] 20 10 Depth+ Scripted Actions
Skeleton

G3D [4] 20 10 Colour+ Scripted Actions
Depth-+
Skeleton

G3Di 18 12 Colour+ Game- Actions+
Depth+ sourced Interactions
Skeleton

2.2 Recognition Algorithms

In human activity recognition there is a vast wealth of research on interaction
recognition and traditionally approaches were appearance based as low level
features could be quickly extracted from colour sequences. Recent work [2] [11]
[12] suggests that human activity recognition accuracy can be improved by using
features from 3D data. Pose based features from skeleton data are a very effective
representation for human motion [3] [7] [10] [19] [20] so we focus on pose based
approaches.

Due to the development of a real time pose estimation algorithm [17] from
depth streams many recent activity recognition algorithms are based on skeletal
joint information. In a recent review of human activity recognition from 3D data
[2], the authors concluded that most current approaches only deal with a single
human subject. Subsequently, the features are based on joints from a single
skeleton such as the pairwise joint location difference feature [3] [7] [19].

These pose based features were extended to multiple skeletons by Yun et al.
[20] to model human interactions. Their experiments showed that the distance
between all pairs of joints was the optimum set of joint features for real time
interaction. This feature measures the pairwise joint distance in each skeleton,
as well as between the two skeletons. This feature set was specifically designed
for person to person interaction where the distance between the joints of the
people aids the classification. For example, the distance between two people can
easily be used to differentiate between approaching and departing. However,
this feature set is not so relevant in virtual human interaction where there is no
physical interaction between the people.

Further research by Hu et al. [10] with pose based features from multiple
skeletons discovered that an interaction can be represented by a positive and
negative action. Their results showed that the positive action on its own was
discriminative enough to classify the interactions in their dataset, so the inter-
action recognition was simplified to positive action recognition. This works for
simple scenarios where there is only one outcome from an action, such as the
punching in their dataset where the first person punches and the second person
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falls away from the hit. However, in more complex scenarios there are more than
one possible reactions from a punch, for example, a hit as just described or a
block where the second person defends themselves by raising their hands in front
of their face. If the skeletal information from the second person is ignored it will
be very difficult to differentiate between these two interactions.

To overcome these limitations, our framework decomposes the interaction
into the actions of both people and infers the interaction from the action pair in
real time. The pose based features are only extracted within a skeleton and not
between skeletons so that our approach can be applied to virtual human interac-
tion. Moreover, decoupling the action and counter action reduces the number of
instances required for training and allows new interactions to be detected that
are not in the training data.

2.3 Evaluation Metrics

A common performance measure used for activity recognition is classification
accuracy which is applied to the entire sequence. For example, an interaction
label is predicted for each frame in the sequence and a majority decision over
all frames is taken to decide the interaction label for the complete sequence.
However, this approach can only be applied to simple sequences containing the
same action class which is not the case for the new dataset.

To overcome the limitations of sequence based evaluation, frame based evalu-
ation metrics have been developed [6] [15]. Escalera et al. [6] introduced a Jaccard
index that can evaluate sequences with multiple action/interaction classes with
respect to time. Ryoo and Aggarwal [15] proposed spatial and temporal bound-
ing boxes to evaluate sequences with multiple interactions with respect to both
space and time. Both approaches are evaluated based on the overlap between the
system detection and the ground truth labels. These application metrics include
temporal constraints but do not evaluate the latency of the detection.

Low latency detection is critical for real world applications such as surveil-
lance and gaming. Nowozin et al. [13] proposed a latency aware performance
metric for online human action recognition. They introduced ‘action points’ as
temporal anchors for the detection and evaluation of single person actions in real
time. According to [13], an action label is correct if it is detected within a specific
time window around the ground truth action point. We propose an interaction
evaluation metric for real time applications which assesses both the accuracy
and latency of the interactions by exploiting the generality of the action point
metric.

3 G3Di Dataset

A new multimodal interaction dataset has been captured, for real time mul-
tiplayer gaming and is publicly available'. G3Di contains synchronised colour,
depth and skeleton data. The dataset was captured using a novel gamesourcing
approach where the users were recorded whilst playing computer games.

! G3Di can be downloaded from http://dipersec.kingston.ac.uk/G3D/
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Depth Skeleton

Fig. 2. Synchronised colour, depth and skeleton data from a boxing game

Our recording environment as illustrated in Fig. 3 allowed us to capture
realistic gaming actions. The inherent competitive nature of the games resulted
in the players putting more effort into their movements. The setup shows two
players as the current generation of depth sensors are limited to full skeleton
tracking of two people. However, the same setup could be used for up to six
players when the next generation of depth sensors are released. The recording
environment contains two overlapping depth sensors: one for playing full body
games on a standard games console and the other to capture the colour, depth
and skeleton data. The disadvantage of using two sensors with overlapping fields
of view is that considerable noise is introduced to the depth data and conse-
quently the skeleton data, due to infrared interference. Specifically, the depth
sensor we used the Kinect, derives depth by projecting a structured light code
onto the scene and comparing the reflected pattern with the stored pattern. To
overcome this problem a motor was attached to one depth sensor to vibrate it and
therefore reduce the interference between them as observed in experiments by
Butler et al. [5].

Due to the formats selected, it is possible to view all the recorded data and
metadata without any special software tools. The three streams were recorded at
30fps in a mirrored view. The depth and colour images were stored as 640x480
PNG files and the skeleton data in XML files. Each skeleton contains the player’s
position and pose: the pose comprises of 20 joints and the joint positions are given
in X, Y and Z coordinates in meters. These positions are also mapped into the
depth and colour coordinate spaces. The skeleton data includes a joint tracking
state, displayed in Fig. 2 as tracked (green), inferred (yellow) and not tracked
(red). The joint tracking state provides the confidence of the data for each joint.
If the data is tracked, the confidence in the data is very high. Whereas, if the
data is inferred by calculating it from other tracked joints, the confidence in the
data is very low. This is important information for developers of multimodal
algorithms fusing data between the skeleton data and other modalities.

To the best of our knowledge this is the first dataset comprised of virtual
interactions, meaning that two players interact with each other through a com-
puter interface. This dataset contains 12 people split into 6 pairs. Each pair
performed 18 gaming actions, for six sports games: boxing (right punch, left
punch, defend), volleyball (serve, overhand hit, underhand hit, jump hit, block
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Fig. 3. Recording environment with 2 depth cameras for simultaneous gameplay and
recording

and jump block), football (kick, block and save), table tennis (serve, forehand
hit and backhand hit), sprint (run) and hurdles (run and jump). Most sequences
contain multiple action classes in a controlled indoor environment with a fixed
camera, a typical setup for gesture based gaming. The people played the game
in a training mode to become familiar with the movements before they were
recorded. The actual game was recorded and particular sections where several
different actions were performed multiple times by each player were selected for
the dataset.

4 Interaction Detection Framework

Our novel framework detects individual actions from multiple people, to infer
the interaction between them. This modular approach is applicable for virtual
interaction and enables interaction between people that are not in the same
physical location. The three key stages of the interaction framework are: training,
testing and evaluation, as illustrated in Fig. 4. The training phase is performed
offline for each action and uses the training data to learn action models. The
testing phase is executed for each frame in real time to provide online interaction
recognition. Actions from different people are detected independently. At each
frame, these detections are combined to infer the current interaction.

An existing approach for online action recognition is to represent each action
by a reference point [3] [7] . An ‘action point’ is defined as a single time instance
that an action is clear and can be uniquely identified for all instances of that
action [13]. For example, the action point of a punch is defined as ‘the time at
which the arm is maximally extended’. An action point has no temporal duration
which accurately represents some actions, for example a punch. However, this
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Fig. 4. The interaction framework comprising of three key stages: training, testing and
evaluation

is not the case for all actions, such as the defend, which is defined as ‘the time
when two hands are positioned in front of the face’ as in reality the hands remain
in front of the face for a significant period of time.

To overcome the limitation of action points we propose action segments.
In contrast to an action point, an action segment has temporal duration. The
duration of the action segment is important for training action classifiers with
consistent samples and should improve detection accuracy. It is also critical for
recognising multiple interactions when one subject performs one long action and
the other multiple short actions. An example is where one subject defends whilst
the other subject punches him multiple times. These should all be detected
as blocking interactions, but without considering the duration of the defend
action, only the first would be detected as a block and the subsequent punches
incorrectly as attacks.

4.1 Training

The training phase transpires offline and uses the data for each action to learn
a model. The ground truth labels are used to select the frames and the subject
within each frame that is performing the specific action. For each subject instance
a feature vector is constructed and concatenated with all subject instances for
the same action. The framework is generic so features from the colour, depth,
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skeleton or a fusion of these features can be used to train any classifier to learn
action models.

In this work, we compare two approaches for training our action models, the
first based on action points and the second based on action segments. Existing
action recognition algorithms are based on action points, they use n frames before
and after the action point to train their classifiers [3] [7] . This is appropriate for
short actions but this new dataset confirms that under realistic gaming condi-
tions some actions have a long duration. Therefore, we recommend that action
classifiers should be trained with all the frames that are part of the action seg-
ment in addition to a few n frames before and after the segment. Our results in
section 5.2 show that adopting action segments instead of action points improves
both the action and interaction accuracy.

To assess the complexity of our realistic dataset we use an established online
action recognition algorithm with published results for multiple existing gaming
datasets [3]. Specifically, we use Adaptive Boosting (AdaBoost) [8] with the same
parameters and skeleton based features as reported in [3].

4.2 Testing

Testing sequences are processed online for real time detection. Each frame is
divided into different people, which are classified into individual actions. These
classifications are then combined to infer the current interaction.

Action Recognition. For each subject, a feature vector is created containing
the same features as used for training the action models. The action model with
the highest response depicts the action label for the current subject to provide
real time action classification. The action model responses for the subject are
summed over a sliding window of w frames to smooth the results and increase
accuracy. This temporal filtering prevents broken actions caused by individual
bad frames and therefore reduces the number of false positives. After smoothing,
the highest action result determines the action label for the current subject. A
change in action label is the detected action point, which is also the start of the
action segment. To incorporate the duration of the action we also record the end
of the action.

Interaction Recognition. To detect interactions for multiple people we must
identify the interaction rules between people. These rules are application specific
and include the valid combinations of actions together with timing constraints.
These rules can be tailored by the application designer to include any necessary
additional constraints.

The interactions for the G3Di dataset are depicted in Table 2, for compact-
ness just two scenarios are shown. The action a and counter action ca, are checked
at each frame together with a timing constraint f to detect interactions in real
time. The timing constraint depends on the scenario, for example all the inter-
actions in boxing are instant (f = 0), the action and counter action co-occur.
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Table 2. Gaming interactions for the boxing and table tennis scenarios in G3Di

Sport Action Counter Action Interaction
Boxing Right Punch Defend Block
Left Punch  Defend Block
Right Punch Other Attack
Left Punch  Other Attack

Right Punch Right Punch  Attack
Right Punch Left Punch Attack
Left Punch  Left Punch Attack

Table Tennis Serve Forehand hit  Rally
Serve Backhand hit  Rally
Serve Other Miss

Forehand hit Forehand hit  Rally
Forehand hit Backhand hit Rally

Forehand hit Other Miss
Backhand hit Backhand hit Rally
Backhand hit Other Miss

However, other scenarios such as table tennis have a delay between the action
and counter action (f > 0).

In this work we evaluate two approaches for detecting interactions, the first
based on modelling actions as a single point in time and the second based on
actions with temporal duration. In both cases, the detected interaction points
can be compared with the ground truth interaction points to obtain a single
F1 score. In the first case action points ¢, are used to represent the actions and
interactions are detected if the action and counter action occur either at the
same time or after a fixed delay, as described by Equation (1).

1 cap—ay = f (1)

0 otherwise

¢ (ay, cay) = {

In the second case action segments are used to represent the actions and
interactions are detected if the action and counter segments overlap either at
the same point in time or after a fixed delay, as described by Equation (2).

1 if (as+ f < cae) & (cas < ae + f)
0 otherwise

¥ (as, Ge, Cas, cae) = { (2)

Where s and e represent the start and end of the action segment respectively
and s < e.

4.3 Interaction Evaluation Framework

To evaluate the performance of both action and interaction recognition algo-
rithms on this new dataset, action and interaction online metrics and ground
truth annotation are required. For action recognition, an existing evaluation
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Fig. 5. An example timeline for a boxing game, showing the true positives (T'P), false
positives (F'P) and false negatives (F'N). A T'P, is a correct interaction identified within
A frames of the ground truth. A F'N, is an undetected interaction on the ground truth.
A F'P, is an incorrect interaction detected.

metric is the action point metric [13]. Action points enable latency aware eval-
uation of online action recognition systems. This metric will be used to assess
the timing of the action points with respect to the ground truth.

For interaction evaluation the existing frame based metrics [6] [15] include
temporal constraints but do not evaluate the latency of the detection. To over-
come these limitations we propose a new interaction point based evaluation
metric that can evaluate both the accuracy and latency of the interactions. The
interaction points can be evaluated in a similar manner to action points, to obtain
a single F1 score for an easy comparison of different interaction algorithms.

Dataset Annotation. The ground truth for the action dataset was convention-
ally annotated by manually labelling each action point and each action segment.
The interaction ground truth could have also been manually labelled but it was
more efficient to automatically construct the interaction labels from the action
ground truth labels. The ground truth interactions are automatically labelled
based on the set of rules that govern the interactions for a particular game (as
described in Section 4.2).

Interaction Evaluation Metric. To evaluate the timing accuracy of an inter-
action we adapt the existing action point metric [13] to assess the timing of the
interaction points with respect to the ground truth. The interaction points are
assessed for detection and timeliness and an F1 score is generated. The accept-
able latency of the interaction is application specific and can be adjusted with
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the A parameter. To clarify the assessment of interaction points a dummy time-
line for a boxing game has been created (Fig. 5), showing the ground truth
and the detected points for actions and interactions. The precision and recall
are measured for each interaction and both of these measures are combined to
calculate a single interaction Fl-score (F1). To measure accuracy for multiple
interactions, the mean interaction F1l-score is calculated over all interactions.

5 Real Time Results

The interaction framework proposed in Section 4 can be used with any classifier.
To obtain our results we used a multiclass implementation of Gentle AdaBoost.
Following [3] [7] we use a ’leave one person out’ protocol. As there are 12 people,
this process is repeated 12 times with different subsets to obtain the average
performance.

5.1 Action Recognition Results

To evaluate the complexity of the actions in the new dataset G3Di in comparison
with actions in existing gaming datasets we recreate experiments previously
performed on those datasets. For a fair comparison, we use the same classifier,
pose based features, parameters and action point evaluation metric as published
in [3]. Specifically, a vector of 297 features is extracted for each skeleton in each
frame which is a concatenation of 57 position difference features, 60 position
velocity features, 20 position velocity magnitude features, 80 joint angle features
and 80 angle velocity features. The latency parameter A was fixed at 330ms for
consistency with previously published results [3] [7].

The previously published action recognition F1 results [3] for the G3D and
MSRC-12 datasets and the new result for the G3Di dataset are shown in Table
3. The F1 for the new dataset is the lowest, indicating that G3Di is more chal-
lenging, especially as the actions in the G3Di boxing scenario are a subset of
those actions found in the G3D fighting scenario.

Table 3. Gaming dataset action results highlighting the complexity of the new dataset

Datasets G3D MSRC-12 G3Di
(Scenario) (Fighting) (FPS) (Boxing)
Action F1  0.896 0.643 0.426

5.2 Interaction Recognition Results

To demonstrate our interaction detection framework on the new dataset G3Di
we initally use action points for detection and the same experimental setup as
described in the previous section to get a baseline result for the G3Di box-
ing dataset. We then incorporate action segments into our interaction detec-
tion framework and repeat the same experiments. We performed quantitative
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Fig. 6. Examples of real time interaction detection. Correct detections TP, are dis-
played in green and incorrect detections are shown in red for F'P and blue for F'N.
The action detected by the system is displayed above each pair of skeletons. The colour
images below each failure cases highlight the major sources of error, transition error

between actions and noisy joints.

evaluation using the action point and interaction point metrics and qualitative
evaluation by visually analysing our failure cases. The quantitative results are
shown in Table 4, which highlight an increase in both the action recognition and
interaction performance by 13%. This confirms that the duration is important
for detecting actions and subsequently interactions in real time.

The qualitative results are displayed in Fig. 6, including examples of correct
and incorrect detected interactions. The colour images below each failure cases
highlight the major sources of error, which are transition error between actions
and noisy joints. The transition errors occur when a player moves quickly from
one action class directly to another without passing through a neutral state.

Table 4. Gaming dataset interaction detection results

Methods Baseline Proposed

(action points) (action segments)
Action F1 0.426 0.561
Interaction F1 0.448 0.571
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As Fig. 6 illustrates, when a player transition from a block to a punch it is
difficult to infer from the skeleton data alone the current action. The colour
images provide additional information to help differentiate the current action
and suggest a fusion of colour and skeleton may improve detection in these
cases. The transition errors support our claim that this new gaming dataset is
more challenging than existing gaming datasets with simple transitions. Some
of the failure cases were also related to noisy joints in our skeleton data but it
is important to have some noise in a realistic gaming dataset as in a real home
environment there may be noise caused by direct sunlight. The noisy joints
endorse our inclusion of joint confidence and additional modalities (depth and
colour) in our new dataset.

6 Conclusions

A novel, realistic and challenging human interaction dataset, G3Di for real time
multiplayer gaming is introduced. It overcomes the limitations of existing 3D
gaming datasets that only contain a single player with simple action sequences.
Our interaction framework recognises individual actions with low latency for
real time interaction detection. The incorporation of the action duration in our
framework improved both the action and interaction performance. We also pro-
posed an interaction evaluation metric for real time applications which assesses
both the accuracy and latency of the interactions. Experimental results indi-
cate higher complexity of the new dataset in comparison to the existing gaming
datasets, highlighting the importance of this dataset for designing algorithms
suitable for realistic interactive applications. Our future work is to develop an
algorithm that fuses features from the depth or colour with the skeleton features
to improve the performance of our interaction detection framework. Addition-
ally, we will incorporate person to person features in the interaction framework
to recognise traditional human interactions.
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