Skip to main content

A Dynamically Reconfigurable Mixed Analog-Digital Filter Bank

  • Conference paper
  • First Online:
Applied Reconfigurable Computing (ARC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9040))

Included in the following conference series:

  • 3998 Accesses

Abstract

A cochlea filter bank for an audible frequency range is used for an acoustic diagnosis, which detects defects of the outer wall. However, a straightforward implementation of a cochlea filter bank by conventional FIR filters uses a large number of taps. Thus, it requires a large amount of hardware. This paper proposes two methods to reduce the amount of hardware. The first one is to use a mixed analog-digital filter, which reduces the number of taps of the FIR filter. The second one is to apply a dynamic reconfiguration which reduces the number of filter banks. We implemented the filter bank by the PSoC1 and the SpartanĀ 6 FPGA. Experimental results shows that the number of taps for the proposed one is reduced by 99.1% from a straightforward realization. Implementation of the acoustic diagnostic system shows the usefulness of the proposed one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, J., Manoli, Y.: Synthesis of analog filters on a continuous-time FPAA using a genetic algorithm. In: FPL 2006, pp. 1ā€“4 (2006)

    Google ScholarĀ 

  2. Bekesy, G.: Experiments in hearing. McGraw-Hill (1960)

    Google ScholarĀ 

  3. Choe, H.C., Karlsen, R.E., Gerhert, G.R., Meitzler, T. : Wavelet-based ground vehicle recognition using acoustic signal. In: Wavelet Applications III, vol. 2762, pp. 434ā€“445 (1996)

    Google ScholarĀ 

  4. Chow, P., Chow, P., Gulak, P.G.: A field-programmable mixed-analog-digital array. In: FPGA 1995, pp. 104ā€“109 (1995)

    Google ScholarĀ 

  5. Deng, L., Geisler, C.D.: A composite auditory model for processing speech sounds. J. Acoust. Soc. Am. 82(2), 2001ā€“2012 (1987)

    ArticleĀ  Google ScholarĀ 

  6. Ekimov, A., Sabatier, J.M.: Vibration and sound signatures of human footsteps in buildings. J. Acoust. Soc. Am. 120, 762ā€“768 (2006)

    ArticleĀ  Google ScholarĀ 

  7. e-Trees.Japan Inc., exStick. http://e-trees.jp/

  8. Freed, D.J.: Auditory correlates of perceived mallet hardness for a set of recorded percussive sound events. J. Acoust. Soc. Am. 87, 311ā€“322 (1990)

    ArticleĀ  Google ScholarĀ 

  9. Kuwaki Civil co. Ltd. http://www.k-civil.co.jp/

  10. Llamocca, D., Pattichis, M.S., Vera, G.A.: Partial reconfigurable FIR filtering system using distributed arithmetic. Int. J. Reconfig. Comp., 1ā€“14 (2010)

    Google ScholarĀ 

  11. Martnez, J.J., Toledo, F.J., Garrigs, F.J., Vicente, J.M.F.: FPGA implementation of an area-time efficient FIR filter core using a self-clocked approach. In: FPL 2006, pp. 547ā€“550 (2006)

    Google ScholarĀ 

  12. Patterson, R.D.: Auditory filter shape. J. Acoust. Soc. Am. 55, 802ā€“809 (1974)

    ArticleĀ  Google ScholarĀ 

  13. Cypress Corp., PSoC Programmable System-on-Chip. http://www.cypress.com/?docID=45148

  14. Repp, B.H.: The sound of two hands clapping: An exploratory study. J. Acoust. Soc. Am. 81(4), 1100ā€“1109 (1987)

    ArticleĀ  Google ScholarĀ 

  15. Sasao, T., Iguchi, Y., Suzuki, T.: On LUT cascade realizations of FIR filters. In: DSD 2005, pp. 467ā€“474 (2005)

    Google ScholarĀ 

  16. Wong, C.K., Leong, P.H.W.: An FPGA-based electronic cochlea with dual fixed-point arithmetic. In: FPL 2006, pp. 1ā€“6 (2006)

    Google ScholarĀ 

  17. Yoshida, H., Nakano, M., Yukimasa, T., Matsumura, S., Yokono, K., Hayama, Y.: Phase error reflects subjective sound quality. International Journal of BSCHS 16(1), 69ā€“80 (2010)

    Google ScholarĀ 

  18. Yoshida, H., Kakui, K., Maeda, Y., Fujiwara, Y.: Least-squares estimation of the extrema in the narrow-band music data. IJ-BSCHS 15(2), 85ā€“91 (2010)

    Google ScholarĀ 

  19. Yoshida, H., Kakui, K., Maeda, Y., Fujiwara, Y.: The adaptive extremal sampling based on a simple acoustic model, Bio-signals: Data acquisition, processing and control. IJ-BSCHS 14(2), 27ā€“34 (2009)

    Google ScholarĀ 

  20. Zwicker, E.: Uber psychologische und Methodische grundlagen der lautheit. Acustica 8, 237ā€“258 (1958)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Nakahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nakahara, H., Yoshida, H., Shioya, Si., Mikami, R., Sasao, T. (2015). A Dynamically Reconfigurable Mixed Analog-Digital Filter Bank. In: Sano, K., Soudris, D., HĆ¼bner, M., Diniz, P. (eds) Applied Reconfigurable Computing. ARC 2015. Lecture Notes in Computer Science(), vol 9040. Springer, Cham. https://doi.org/10.1007/978-3-319-16214-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16214-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16213-3

  • Online ISBN: 978-3-319-16214-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics