Skip to main content

Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors in FPGA

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9040))

Abstract

This paper presents a novel method for estimating the dynamic energy consumption of soft processors in FPGA, using an operand-value-based model at the instruction level. Our energy model contains three components: the instruction base energy, the maximum variation in the instruction energy due to input data, and the impact of one’s density of the operand values during software execution. Using multiple benchmarks, we demonstrate that our model has only 4.7% average error and 12% worst case error compared to the reference post-place-and-route simulations, and is more than twice as accurate as existing instruction-level models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazzaz, M., Salehi, M., Ejlali, A.: An accurate instruction-level energy estimation model and tool for embedded systems. IEEE Trans. On Instrumentation and Measurement 62(7) (2013)

    Google Scholar 

  2. Xilinx Inc, Power Methodology Guide UG786 (2011). http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ug786_PowerMethodology.pdf

  3. Sinha, A., Chandrakasan, A.P.: JouleTrack-a web based tool for software energy profiling. In: Proceedings, Design Automation Conference pp. 220–225 (2001)

    Google Scholar 

  4. Krishnaswamy, A., Gupta, R.: Dynamic coalescing for 16-bit instructions. ACM TECS 2005, 3–37 (2005)

    Article  Google Scholar 

  5. Xilinx Inc, XPower Analyzer (2011). http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm

  6. Synopsys Inc. Power Compiler (2012). http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/PowerCompiler.aspx

  7. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Comm. of the ACM 27, 1013–1030 (1984)

    Article  Google Scholar 

  8. Xilinx Inc.: LogiCORE IP, MicroBlaze micro controller system. http://www.xilinx.com/tools/microblaze.htm

  9. Gurumurthi, S., Sivasubramaniam, A., Irwin, M.J., Vijaykrishnan, N., Kandemir, M.: Using complete machine simulation for software power estimation: The SoftWatt approach. HPCA, pp. 141–150 (2002)

    Google Scholar 

  10. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power analysis and optimizations. ISCA, pp. 83–94 (2000)

    Google Scholar 

  11. Ahmadinia, A., Ahmad, B., Arslan, T.: A state based framework for efficient system-level power estimation of costum reconfigurable cores. In: Proceedings, SOC Conf., pp. 1–4 (2008)

    Google Scholar 

  12. Chen, J., Thiele, L.: Task partitioning and platform synthesis for energy efficiency. In: Proceedings. RTCSA, pp. 393–402 (2009)

    Google Scholar 

  13. Brandolese, C., et al.: Software energy estimation based on statistical characterization of intermediate compilation code. Symposium. Low Power Electronics and Design (ISLPED), pp. 333–338 (2011)

    Google Scholar 

  14. Tiwari, V., Tien-Chien Lee, M.: Power analysis of a 32-bit embedded microcontroller. ASPDAC, pp. 141–148 (1995)

    Google Scholar 

  15. Tien-Chien Lee, M., Tiwari, V., Malik, S., Fujita, M.: Power analysis and minimization techniques for embedded DSP software. IEEE VLSI, (5), pp. 123–135 (1997)

    Google Scholar 

  16. Roy, S., Bhatia, R., Mathur, A.: An accurate energy estimation framework for VLIW processor cores. In: Proceedings. ICCD, pp. 464–469 (2006)

    Google Scholar 

  17. Kim, J., Kang, K., Shim, H., et al.: Fast estimation of software energy consumption using IPI(inter-prefetch interval) energy model. In: VLSI-SoC, pp. 224–229 (2007)

    Google Scholar 

  18. Sailer, P.M., Philip, M., Kaeli, R.: The DLX Instruction Set Architecture Handbook (1st ed.). Morgan Kaufmann Publishers Inc., CA, USA (1996)

    Google Scholar 

  19. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. On Consumer Electronics 38, xviii–xxxiv (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaid Al-Khatib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Khatib, Z., Abdi, S. (2015). Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors in FPGA. In: Sano, K., Soudris, D., Hübner, M., Diniz, P. (eds) Applied Reconfigurable Computing. ARC 2015. Lecture Notes in Computer Science(), vol 9040. Springer, Cham. https://doi.org/10.1007/978-3-319-16214-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16214-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16213-3

  • Online ISBN: 978-3-319-16214-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics