Skip to main content
Book cover

Smart Health pp 189–208Cite as

A User-Centered Design Approach to Physical Motion Coaching Systems for Pervasive Health

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8700))

Abstract

Our goal is to develop a system for coaching human motions (e.g., for rehabilitation and daily health maintenance). This paper focuses on how to coach a user so that his/her motion gets closer to the good template of a target motion. It is important to efficiently advise the user to emulate the crucial features that define the good template. The proposed system (1) automatically mines the crucial features of any kind of motion from a set of motion features and (2) gives the user feedback about how to modify the motion through an intuitive interface. The crucial features are mined by feature sparsification through binary classification between the samples of good and other motions. An interface for motion coaching is designed to give feedback via different channels (e.g., visually, aurally), depending on the type of error. To use the total system, all the user must do is just move and then get feedback on the motion. Following experimental results, open problems for future work are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We assume that a target motion can be classified into good and other motions. For example, any motion in rehabilitation should be as correct (i.e., good) as possible.

  2. 2.

    To validate the system, a sport motion is a good example because its exercise is important for skill proficiency of beginners as well as rehabilitation of experts.

References

  1. Campana, F., Moreno, A., Riano, D., Laszlo, Z.: K4care: Knowledge-based homecare eservices for an ageing europe

    Google Scholar 

  2. Laleci, G.B., Dogac, A., Olduz, M., Tasyurt, I., Yuksel, M., Okcan, A.: Spahire: A multi-agent system for remote healthcare monitoring through computerized clinical guidelines. In: Agent Technology and E-Health (2007)

    Google Scholar 

  3. Villar, A., Federici, A., Annicchiarico, R.: K4care: Knowledge-based homecare eservices for an ageing europe. In: Agent Technology and E-Health (2007)

    Google Scholar 

  4. Vergados, D.J., Alevizos, A., Mariolis, A., Caragiozidis, M.: Intelligent services for assisting independent living of elderly people at home. In: PETRA (2008)

    Google Scholar 

  5. Population Censuses and Surveys Office: General Household Survey 1994 (1995)

    Google Scholar 

  6. World Health Organization: Active Aging: A Policy Framework (2012)

    Google Scholar 

  7. Nehmer, J., Becker, M., Karshmer, A.I., Lamm, R.: Living assistance systems: an ambient intelligence approach. In: ICSE, pp. 43–50 (2006)

    Google Scholar 

  8. de Ruyter, B.E.R., Pelgrim, E.: Ambient assisted-living research in carelab. Interactions 14(4), 30–33 (2007)

    Article  Google Scholar 

  9. Health Education Authority: Older People - Older People and Accidents, Fact Sheet 2 (1999)

    Google Scholar 

  10. Torgerson, D., Dolan, D.J.: The cost of treating osteoporotic fractures in the united kingdom female population

    Google Scholar 

  11. EU: The Demographic Future of Europe - From Challenge to Opportunity. Commission Communication (2006)

    Google Scholar 

  12. Adam, S., Mukasa, K.S., Breiner, K., Trapp, M.: An apartment-based metaphor for intuitive interaction with ambient assisted living applications. In: BCS HCI (1) (2008)

    Google Scholar 

  13. Röcker, C.: User-centered design of intelligent environments: Requirements for designing successful ambient assisted living systems. In: The Central European Conference of Information and Intelligent Systems (2013)

    Google Scholar 

  14. Röcker, C.: Smart medical services: a discussion of state-of-the-art approaches. International Journal of Machine Learning and Computing

    Google Scholar 

  15. Röcker, C., Ziefle, M.: Current approaches to ambient assisted living. In: The International Conference on Future Information Technology and Management Science and Engineering (2012)

    Google Scholar 

  16. Röcker, C., Maeder, A.: User-centered design of smart healthcare applications. Electron. J. Health Inf. 6(2), 1–3 (2011)

    Google Scholar 

  17. Röcker, C.: Designing ambient assisted living applications: an overview of state-of-the-art implementation concepts. In: The International Conference on Information and Digital Engineering (2011)

    Google Scholar 

  18. Ziefle, M., Röcker, C., Holzinger, A.: Medical technology in smart homes: Exploring the user’s perspective on privacy, intimacy and trust. In: COMPSAC Workshops, pp. 410–415 (2011)

    Google Scholar 

  19. Röcker, C., Ziefle, M., Holzinger, A.: Social inclusion in aal environments: Home automation and convenience services for elderly users. In: The International Conference on Artificial Intelligence (2011)

    Google Scholar 

  20. Röcker, C.: Intelligent environments as a promising solution for addressing current demographic changes. Int. J. Innov. Manage. Technol. 4(1), 76–79 (2013)

    Google Scholar 

  21. Ukita, N., Hirai, M., Kidode, M.: Complex volume and pose tracking with probabilistic dynamical models and visual hull constraints. In: ICCV (2009)

    Google Scholar 

  22. Ukita, N., Kanade, T.: Gaussian process motion graph models for smooth transitions among multiple actions. Comput. Vis. Image Underst. 116(4), 500–509 (2012)

    Article  Google Scholar 

  23. Ukita, N.: Simultaneous particle tracking in multi-action motion models with synthesized paths. Image Vis. Comput. 31(6–7), 448–459 (2013)

    Article  Google Scholar 

  24. Miles, H.C., Pop, S., Watt, S.J., Lawrence, G.P., John, N.W.: A review of virtual environments for training in ball sports. Comput. Graph. 36(6), 714–726 (2012)

    Article  Google Scholar 

  25. Velloso, E., Bulling, A., Gellersen, H.: Motionma: motion modelling and analysis by demonstration. In: CHI (2013)

    Google Scholar 

  26. Matsumoto, M., Yano, H., Iwata, H.: Development of a motion teaching system using an immersive projection display and a haptic interface. In: WHC. (2007)

    Google Scholar 

  27. Chatzitofis, A., Vretos, N., Zarpalas, D., Daras, P.: Three-dimensional monitoring of weightlifting for computer assisted training. In: VRIC (2013)

    Google Scholar 

  28. Takano, K., Li, K.F., Johnson, M.G.: The design of a web-based multimedia sport instructional system. In: AINA Workshops (2011)

    Google Scholar 

  29. Chen, Y.J., Hung, Y.C.: Using real-time acceleration data for exercise movement training with a decision tree approach. Expert Syst. Appl. 37(12), 7552–7556 (2010)

    Article  Google Scholar 

  30. O’Sullivan, D., Igoe, T.: Physical computing (2004)

    Google Scholar 

  31. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  32. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM TIST 2(3), 27 (2011)

    Google Scholar 

  33. Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol. 411, pp. 119–135. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  34. Girshick, R.B., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.W.: Efficient regression of general-activity human poses from depth images. In: ICCV (2011)

    Google Scholar 

  35. Myers, C.S., Rabiner, L.R.: Comparative study of several dynamic time-warping algorithms for connected-word recognition. Bell Syst. Tech. J. 60(7), 1389–1409 (1981)

    Article  Google Scholar 

  36. Ukita, N., Kaulen, D., Röcker, C.: Towards an automatic motion coaching system: feedback techniques for different types of motion errors. In: International Conference on Physiological Computing Systems (2014)

    Google Scholar 

  37. Li, L.J., Su, H., Xing, E.P., Li, F.F.: Object bank: a high-level image representation for scene classification and semantic feature sparsification. In: NIPS (2010)

    Google Scholar 

  38. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embeddin. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  39. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  40. Lawrence, N.D.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MATH  MathSciNet  Google Scholar 

  41. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  42. Kelly, D., McDonald, J., Markham, C.: A system for teaching sign language using live gesture feedback. In: FG (2008)

    Google Scholar 

  43. Takahata, M., Shiraki, K., Sakane, Y., Takebayashi, Y.: Sound feedback for powerful karate training. In: NIME (2004)

    Google Scholar 

  44. Evans, C., Palacios, L.: Using audio to enhance learner feedback. In: International Conference on Education and Management Technology (2010)

    Google Scholar 

  45. Spelmezan, D., Borchers, J.: Real-time snowboard training system. In: CHI Extended Abstracts (2008)

    Google Scholar 

Reading

  1. Ukita, N., Kaulen, D., Röcker, C.: Towards an automatic motion coaching system: feedback techniques for different types of motion errors. In: International Conference on Physiological Computing (2014)

    Google Scholar 

  2. Ukita, N., Kaulen, D., Röcker, C.: Mining crucial features for automatic rehabilitation coaching systems. In: International Workshop on User-Centered Design of Pervasive Healthcare Applications (2014)

    Google Scholar 

  3. Holzinger, A., Ziefle, M., Röcker, C.: Pervasive Health - State-of-the-Art and Beyond. Springer, London (2014)

    Book  Google Scholar 

  4. Varshney, U.: Pervasive Healthcare Computing: EMR/EHR. Wireless and Health Monitoring. Springer, United States (2009)

    Book  Google Scholar 

  5. Röcker, C., Ziefle, M.: Smart Healthcare Applications and Services: Developments and Practices. IGI Publishing, Niagara Falls (2011)

    Book  Google Scholar 

  6. Bardram, J., Mihailidis, A., Wan, D.: Pervasive Computing in Healthcare. CRC Press Inc., Boca Raton (2006)

    Google Scholar 

  7. Röcker, C., Ziefle, M.: E-Health, Assistive Technologies and Applications for Assisted Living: Challenges and Solutions. IGI Publishing, Niagara Falls (2011)

    Book  Google Scholar 

  8. Jähn, K., Nagel, E.: E-Health. Springer, Berlin (2003)

    Google Scholar 

  9. Ziefle, M., Röcker, C.: Human-Centered Design of E-Health Technologies: Concepts. Methods and Applications. IGI Publishing, Niagara Falls (2011)

    Book  Google Scholar 

  10. Coronato, A., De Pietro, G.: Pervasive and Smart Technologies for Healthcare: Ubiquitous Methodologies and Tools. IGI Publishing, Niagara Falls (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimichi Ukita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ukita, N., Kaulen, D., Röcker, C. (2015). A User-Centered Design Approach to Physical Motion Coaching Systems for Pervasive Health. In: Holzinger, A., Röcker, C., Ziefle, M. (eds) Smart Health. Lecture Notes in Computer Science(), vol 8700. Springer, Cham. https://doi.org/10.1007/978-3-319-16226-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16226-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16225-6

  • Online ISBN: 978-3-319-16226-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics