Abstract
The ASCENS project works with systems of self-aware, self-adaptive and self-expressive ensembles. Performance awareness represents a concern that cuts across multiple aspects of such systems, from the techniques to acquire performance information by monitoring, to the methods of incorporating such information into the design making and decision making processes. This chapter provides an overview of five project contributions – performance monitoring based on the DiSL instrumentation framework, measurement evaluation using the SPL formalism, performance modeling with fluid semantics, adaptation with DEECo and design with IRM-SA – all in the context of the cloud case study.
This research was supported by the European project IP 257414 (ASCENS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aoki, M.: Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control 13(3) (1968)
ASM (2014), http://asm.ow2.org/
Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Mathematical Programming Study. North-Holland Publishing Company, Amsterdam (1984)
Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A., Wirsing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184. Springer, Heidelberg (2015)
Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of Applied Probability 31(1) (1994)
Bulej, L., Bureš, T., Horký, V., Keznikl, J., Tůma, P.: Performance awareness in component systems: Vision paper. In: Proc. COMPSAC 2012 CORCS (2012)
Bulej, L., Bureš, T., Horký, V., Keznikl, J.: Adaptive deployment in ad-hoc systems using emergent component ensembles: Vision paper. In: Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering (ICPE ’13), ACM Press, New York (2013)
Bulej, L., Bureš, T., Horký, V., Kotrč, J., Marek, L., Trojánek, T., Tůma, P.: SPL: Unit testing performance. Tech. Rep. D3S-TR-2014-04, Dep. of Distributed and Dependable Systems, Charles University in Prague (2014)
Bulej, L., Bureš, T., Keznikl, J., Koubková, A., Podzimek, A., Tůma, P.: Capturing performance assumptions using stochastic performance logic. In: Proc. ICPE 2012, ACM Press, New York (2012)
Bureš, T., Horký, V., Kit, M., Marek, L., Tůma, P.: Towards performance-aware engineering of autonomic component ensembles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 131–146. Springer, Heidelberg (2014)
Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECo – an ensemble-based component system. In: Proc. of the International ACM SIGSOFT Symposium on Component Based Software Engineering (CBSE ’13), Vancouver, Canada, ACM, New York (2013)
Bureš, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 405–428. Springer, Heidelberg (2015)
Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of production systems. In: Proceedings of the USENIX Annual Technical Conference (ATC’04), Berkeley, CA, USA (2004)
Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391 (2008)
Chiba, S.: Load-time structural reflection in Java. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, p. 313. Springer, Heidelberg (2000)
Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33–34) (2009)
Clark, M.: JUnitPerf (2014), http://www.clarkware.com/software/JUnitPerf
Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. Theor. Comput. Sci. 411(22-24) (2010)
Herbst, N.R., Huber, N., Kounev, S., Amrehn, E.: Self-adaptive workload classification and forecasting for proactive resource provisioning. In: Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering (ICPE ’13), ACM Press, New York (2013)
Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for MTIPP. In: Proceedings of Process Algebra and Probabilistic Methods, Erlangen (1994)
Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of Quantitative Evaluation of Systems, IEEE Computer Society Press, Los Alamitos (2005)
Hillston, J.: A compositional approach to performance modelling. Cambridge University Press, New York (1996)
Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg (2015)
Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble Development Life Cycle and Best Practices for Collective Autonomic Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg (2015)
Horký, V., Haas, F., Kotrč, J., Lacina, M., Tůma, P.: Performance regression unit testing: a case study. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 149–163. Springer, Heidelberg (2013)
Horký, V., Libič, P., Marek, L., Steinhauser, A., Tůma, P.: Utilizing performance unit tests to increase performance awareness. In: Proc. ICPE 2015, ACM Press, New York (2015)
Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent types. In: DSN (2013)
Iwase, Y., Levin, S.A., Andreasen, V.: Aggregation in model ecosystems I: perfect aggregation. Ecological Modelling 37 (1987)
JDOM Library (2013), http://www.jdom.org
Kalibera, T., Bulej, L., Tůma, P.: Benchmark precision and random initial state. In: Proc. SPECTS 2005, pp. 853–862. SCS (2005)
Kalibera, T., Bulej, L., Tuma, P.: Automated detection of performance regressions: the Mono experience. In: 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 2005, IEEE Computer Society Press, Los Alamitos (2005)
Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.: Design of ensemble-based component systems by invariant refinement. In: Proc. of the 16th International ACM SIGSOFT Symposium on Component Based Software Engineering (CBSE ’13), Vancouver, Canada, ACM, New York (2013)
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, p. 327. Springer, Heidelberg (2001)
Kwiatkowski, M., Stark, I.: The continuous π-calculus: A process algebra for biochemical modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 103–122. Springer, Heidelberg (2008)
Marek, L., Zheng, Y., Ansaloni, D., Bulej, L., Sarimbekov, A., Binder, W., Tůma, P.: Introduction to dynamic program analysis with DiSL. Science of Computer Programming (2014)
Marek, L., Zhen, Y., Binder, W.: DiSL (2012), http://d3s.mff.cuni.cz/software/disl
Marek, L., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z., Tuma, P.: DiSL: An extensible language for efficient and comprehensive dynamic program analysis. In: Proc. 7th Workshop on Domain-Specific Aspect Languages (DSAL ’12), ACM Press, New York (2012)
Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)
Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)
Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data without doing anything obviously wrong. In: Proceedings of ASPLOS 2009, ACM Press, New York (2009)
De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M., Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design, Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg (2015)
Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of chemical reaction systems. Chemical Reviews 2(98) (1998)
Oracle: JVM Tool Interface (2006), http://docs.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
Perf4J (2014), http://perf4j.codehaus.org/
Perl, S.E., Weihl, W.E.: Performance assertion checking. SIGOPS Oper. Syst. Rev. 27 (1993)
Reynolds, P., Killian, C., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip: Detecting the Unexpected in Distributed Systems. In: NSDI’06. USENIX (2006)
Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (2011)
SPL Tool (2013), http://d3s.mff.cuni.cz/software/spl
SystemTap (2014), http://sourceware.org/systemtap/
Tahchiev, P., Leme, F., Massol, V., Gregory, G.: JUnit in Action, 2nd edn. (2010)
Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering 38(1) (2012)
Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 380–394. Springer, Heidelberg (2012)
Tschaikowski, M., Tribastone, M.: Tackling continuous state-space explosion in a Markovian process algebra. Theoretical Computer Science 517 (2014)
Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations in Markovian process algebra. Journal of Logical and Algebraic Methods in Programming (2014)
Vetter, J.S., Worley, P.H.: Asserting Performance Expectations. In: Proc. 2002 ACM/IEEE Conf. on Supercomputing (Supercomputing ’02), IEEE Computer Society Press, Los Alamitos (2002)
Welch, B.L.: The generalization of student’s problem when several different population variances are involved. Biometrika 34(1/2) (1947)
Wirsing, M., Hölzl, M.M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Bulej, L. et al. (2015). Supporting Performance Awareness in Autonomous Ensembles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds) Software Engineering for Collective Autonomic Systems. Lecture Notes in Computer Science, vol 8998. Springer, Cham. https://doi.org/10.1007/978-3-319-16310-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-16310-9_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16309-3
Online ISBN: 978-3-319-16310-9
eBook Packages: Computer ScienceComputer Science (R0)