Abstract
With the large growth of photos on the Internet, the need for large-scale, real-time image retrieval systems is emerging. Current state-of-the-art approaches in these systems leverage binary features (e.g., hashed codes) for indexing and matching. They usually (1) index data with multiple hash tables to maximize recall, and (2) utilize weighted hamming distance (WHD) to accurately measure the hamming distance between data points. However, these methods pose several challenges. The first is in determining suitable index keys for multiple hash tables. The second is that the advantage of bitwise operations for binary features is offset by the use of floating point operations in calculating WHD. To address these challenges, we propose a probabilistic selection model that considers the weights of hash bits in constructing hash tables, and that can be used to approximate WHD (AWHD). Moreover, it is a general method that can be applied to any binary features with predefined (learned) weights. Experiments show a time savings of up to 95% when calculating AWHD compared to WHD while still achieving high retrieval accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Instagram, http://instagram.com/press/
Girod, B., Chandrasekhar, V., Chen, D.M., Cheung, N.M., Grzeszczuk, R., Reznik, Y., et al.: Mobile visual search. In: IEEE SPM (2011)
He, J., Feng, J., Liu, X., Cheng, T., Lin, T.H., Chung, H., Chang, S.F.: Mobile product search with bag of hash bits and boundary reranking. In: CVPR (2012)
Wang, X.J., Zhang, L., Jing, F., Ma, W.Y.: Annosearch: Image auto-annotation by search. In: CVPR (2006)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: IJCV (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)
Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. In: TPAMI (2012)
Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Sys. Sci. 66(4), 671–687 (2003)
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: ACM STOC (2002)
Cai, J., Liu, Q., Chen, F., Joshi, D., Tian, Q.: Scalable Image Search with Multiple Index Tables. In: ICMR (2014)
Zhang, X., Zhang, L., Shum, H.Y.: QsRank: Query-sensitive hash code ranking for efficient ε-neighbor search. In: CVPR (2012)
Zhang, L., Zhang, Y., Tang, J., Lu, K., Tian, Q.: Binary code ranking with weighted hamming distance. In: CVPR (2013)
Jiang, Y.G., Wang, J., Chang, S.F.: Lost in binarization: query-adaptive ranking for similar image search with compact codes. In: ICMR (2011)
Zhou, W., Lu, Y., Li, H., Tian, Q.: Scalar quantization for large scale image search. ACM Multimedia (2012)
Chandrasekhar, V.R., Chen, D.M., Tsai, S.S., Cheung, N.M., Chen, H., Takacs, G., et al.: The stanford mobile visual search data set. ACM MMSys (2011)
Avrithis, Y., Kalantidis, Y., Tolias, G., Spyrou, E.: Retrieving landmark and non-landmark images from community photo collections. ACM Multimedia (2010)
Tsai, S.S., Chen, D., Takacs, G., Chandrasekhar, V., Vedantham, R., Grzeszczuk, R., Girod, B.: Fast geometric re-ranking for image-based retrieval. In: ICIP (2010)
Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: ACM SIGKDD (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Tsai, CY., Kuo, YH., Hsu, W.H. (2015). Approximating Weighted Hamming Distance by Probabilistic Selection for Multiple Hash Tables. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds) Advances in Information Retrieval. ECIR 2015. Lecture Notes in Computer Science, vol 9022. Springer, Cham. https://doi.org/10.1007/978-3-319-16354-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-16354-3_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16353-6
Online ISBN: 978-3-319-16354-3
eBook Packages: Computer ScienceComputer Science (R0)