Skip to main content

Inference of Circadian Regulatory Pathways Based on Delay Differential Equations

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Included in the following conference series:

  • 3121 Accesses

Abstract

Inference of circadian regulatory network models is highly challenging due to the number of biological species and non-linear interactions. In addition, statistical methods that require the numerical integration of the data model are computationally expensive.

Using state-of-the-art adaptive gradient matching methods which model the data with Gaussian processes, we address these issues through two novel steps. First, we exploit the fact that, when considering gradients, the interacting biological species can be decoupled into sub-models which contain fewer parameters and are individually quicker to run. Second, we substantially reduce the complexity of the network by introducing time delays to simplify the modelling of the intermediate protein dynamics.

A Metropolis-Hastings scheme is used to draw samples from the posterior distribution in a Bayesian framework. Using a recent delay differential equation model describing circadian regulation affecting physiology in the mouse liver, we investigate the extent to which deviance information criterion can distinguish between under-specified, correct and over-specified models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brooks, S.P., Gelman, A.: General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7, 434 (1998)

    MathSciNet  Google Scholar 

  2. Calderhead, B., Girolami, M., Lawrence, N.D.: Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. Advances in Neural Information Processing Systems (NIPS) 21, 217–224 (2009)

    Google Scholar 

  3. Celeux, G., Forbes, F., Robert, C.P., Titterington, M.: Deviance information criteria for missing data models. Bayesian Analysis 1, 651–674 (2006)

    Article  MathSciNet  Google Scholar 

  4. Dondelinger, F., Husmeier, D., Rogers, S., Filippone, M.: ODE parameter inference using adaptive gradient matching with Gaussian processes. In: Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, pp. 216–228 (2013)

    Google Scholar 

  5. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: Efficient adaptive MCMC. Statistics and Computing 16, 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  6. Higham, C.F., Husmeier, D.: A Bayesian approach for parameter estimation in the extended clock gene circuit of Arabidopsis thaliana. BMC Bioinformatics 14, S3 (2013)

    Google Scholar 

  7. Holsclaw, T., Sansó, B., Lee, H.K.H., Heitmann, K., Habib, S., Higdon, D., Alam, U.: Gaussian process modeling of derivative curves. Technometrics 55, 57–67 (2012)

    Article  Google Scholar 

  8. Korenčič, A., Bordyugov, G., Košir, R., Rozman, D., Goličnik, M., Herzel, H.: The interplay of cis-regulatory elements rules circadian rhythms in mouse liver. PLoS One 7, e46835 (2012)

    Google Scholar 

  9. Korenčič, A., Košir, R., Bordyugov, G., Lehmann, R., Rozman, D., Herzel, H.:: Timing of circadian genes in mammalian tissues. Scientific Reports 4 (2014)

    Google Scholar 

  10. Oates, C.J., Dondelinger, F., Bayani, N., Korola, J., Gray, J.W., Mukherjee, S.: Causal network inference using biochemical kinetics. Bioinformatics 30, i468–i474 (2014)

    Google Scholar 

  11. Pokhilko, A., Fernández, A.P., Edwards, K.D., Southern, M.M., Halliday, K.J., Millar, A.J.: The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Molecular Systems Biology 8, 574 (2012)

    Article  Google Scholar 

  12. Pokhilko, A., Mas, P., Millar, A.J.: Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs. BMC Systems Biology 7, 23 (2013)

    Article  Google Scholar 

  13. Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: A generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 741–796 (2007)

    Article  MathSciNet  Google Scholar 

  14. Rasmussen, C.E., Nickish, H.: Gaussian processes for machine learning (GPML) toolbox. Journal of Machine Learning Research 11, 3011–3015 (2010)

    MATH  Google Scholar 

  15. Solak, E., Murray-Smith, R., Leithead, W., Rasmussen, C., Leith, D.: Derivative observations in gaussian process models of dynamic systems. In: Advances in Neural Information Processing Systems (NIPS), pp. 1033–1040 (2003)

    Google Scholar 

  16. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64, 583–639 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vyshemirsky, V., Girolami, M.A.: Bayesian ranking of biochemical system models. Bioinformatics 24, 833–839 (2008)

    Article  Google Scholar 

  18. Wang, Y., Barber, D.: Gaussian processes for Bayesian estimation in ordinary differential equations. In: Journal of Machine Learning Research - Workshop and Conference Proceedings (ICML), vol. 32, pp. 1485–1493 (2014)

    Google Scholar 

  19. Zhang, E.E., Kay, S.A.: Clocks not winding down: unravelling circadian networks. Nature Reviews. Molecular Cell Biology 11, 764–776 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Higham, C.F., Husmeier, D. (2015). Inference of Circadian Regulatory Pathways Based on Delay Differential Equations. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics