Skip to main content

PloidyQuantX: A Quantitative Microscopy Imaging Tool for Ploidy Quantification at Cell and Organ Level in Arabidopsis Root

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Abstract

Mapping centromere distribution in complete organs is a key step towards establishing how this couples to organ development and cell functions. In this context, quantitative microscopy tools play a key role, as they allow a precise measurement of centromere presence at both individual cell and whole organ levels. This work introduces PloidyQuantX, an imaging tool that operates on confocal microscopy image stacks. Tested on imagery obtained from whole-mount centromere Q-FISH of the Arabidopsis thaliana primary root, PloidyQuantX incorporates interactive segmentation and image analysis modules that allow quantifying the number of centromeres present in each cell nucleus, thus creating maps of centromere distribution in cells across the whole organ. Moreover, the presented tool also allows rendering three-dimensional models of each individual root cell, which makes it possible to relate their internal topology to specific cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sullivan, B.A., Blower, M.D., Karpen, G.H.: Determining Centromere Identity: Cyclical Stories and Forking Paths. Nature Reviews Genetics 2, 584–596 (2001)

    Article  Google Scholar 

  2. O’Connor, C.: Chromosome Segregation in Mitosis: The Role of Centromeres. Nature Education 1(1), 28 (2008)

    Google Scholar 

  3. Tomonaga, T., Matsushita, K., Yamaguchi, S., Oohashi, T., Shimada, H., Ochiai, T., Yoda, K., Nomura, F.: Overexpression and Mistargeting of Centromere Protein-A in Human Primary Colorectal Cancer. Cancer Res. 63(13), 3511–3516 (2003)

    Google Scholar 

  4. McGovern, S.L., Qi, Y., Pusztai, L., Symmans, W.F., Buchholz, T.A.: Centromere Protein-A, an Essential Centromere Protein, is a Prognostic Marker for Relapse in Estrogen Receptor-Positive Breast Cancer. Breast Cancer Res. 14(3), R72 (2012)

    Google Scholar 

  5. Round, E.K., Flowers, S.K., Richards, E.J.: Arabidopsis thaliana Centromere Regions: Genetic Map Positions and Repetitive DNA Structure. Genome Res. 7, 1045–1053 (1997)

    Google Scholar 

  6. Copenhaver, G.P.: Using Arabidopsis to Understand Centromere Function: Progress and Prospects. Chromosome Res. 11, 255–262 (2003)

    Article  Google Scholar 

  7. Barlow, P.: Endopoliploidy, Towards an Understanding of Its Biological Significance. Acta Biotheor. 27, 1–18 (1978)

    Article  Google Scholar 

  8. Fransz, P., de Jong, H., Lysak, M., Castiglione, M.R., Schubert, I.: Interphase Chromosomes in Arabidopsis are Organized As Well Defined Chromocenters From Which Euchromatin Loops Emanate. Proc. Natl. Acad. Sci. USA 99, 14584–14589 (2002)

    Article  Google Scholar 

  9. Pecinka, A., Schubert, V., Meister, A., Kreth, G., Klatte, M., Lysak, M.A., Fuchs, J., Schubert, I.: Chromosome Territory Arrangement and Homologous Pairing in Nuclei of Arabidopsis Thaliana are Predominantly Random Except for NOR-Bearing Chromosomes. Chromosoma 113, 258–269 (2004)

    Article  Google Scholar 

  10. Gonzalez-Garcia, M.P., Vilarrasa-Blasi, J., Zhiponova, M., Divol, F., Mora-Garcia, S., Russinova, E., Cano-Delgado, A.I.: Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138, 849–859 (2011)

    Article  Google Scholar 

  11. Wellner, P.: Adaptive Thresholding for the DigitalDesk. Techical Report EPC-93-110. Cambridge, UK: Rank Xerox Research Center (1993)

    Google Scholar 

  12. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall (2008)

    Google Scholar 

  14. Lin, G., Adiga, U., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B.: A Hybrid 3D-Watershed Algorithm Incorporating Gradient Cues and Object Models for Automatic Segmentation of Nuclei in Confocal Image Stacks. Cytometry A 56(1), 23–36 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sevillano, X., Ferrer, M., González-García, MP., Pavelescu, I., Caño-Delgado, A.I. (2015). PloidyQuantX: A Quantitative Microscopy Imaging Tool for Ploidy Quantification at Cell and Organ Level in Arabidopsis Root. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics