Skip to main content

Predicting Plateau Pressure in Intensive Medicine for Ventilated Patients

  • Conference paper
New Contributions in Information Systems and Technologies

Abstract

Barotrauma is identified as one of the leading diseases in Ventilated Patients. This type of problem is most common in the Intensive Care Units. In order to prevent this problem the use of Data Mining (DM) can be useful for predicting their occurrence. The main goal is to predict the occurence of Barotrauma in order to support the health professionals taking necessary precautions. In a first step intensivists identified the Plateau Pressure values as a possible cause of Barotrauma. Through this study DM models (classification) where induced for predicting the Plateau Pressure class (>=30 cm H 2 O) in a real environment and using real data. The present study explored and assessed the possibility of predicting the Plateau pressure class with high accuracies. The dataset used only contained data provided by the ventilators. The best models are able to predict the Plateau Pressure with an accuracy ranging from 95.52% to 98.71%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Santos, M., Azevedo, C.: Data Mining Descoberta do conhecimento em base de dados. FCA - Editora de Informática, Lda (2005)

    Google Scholar 

  2. Santos, M., Boa, M., Portela, F., Silva, Á., Rua, F.: Real-time prediction of organ failure and outcome in intensive medicine. In: 2010 5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2010)

    Google Scholar 

  3. Koh, H., Tan, G.: Data mining applications in healthcare. J. Healthc. Inf. Manag. 19(2), 64–72 (2005)

    Google Scholar 

  4. Anzueto, A., Frutos-Vivar, F., Esteban, A., Alía, I., Brochard, L., Stewart, T., Benito, S., Tobin, M.J., Elizalde, J., Palizas, F., David, C.M., Pimentel, J., González, M., Soto, L., D’Empaire, G., Pelosi, P.: Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 30(4), 612–619 (2004)

    Article  Google Scholar 

  5. Al-Rawas, N., Banner, M.J., Euliano, N.R., Tams, C.G., Brown, J., Martin, A.D., Gabrielli, A.: Expiratory time constant for determinations of plateau pressure, respiratory system compliance, and total resistance. Crit. Care 17(1), R23 (2013)

    Article  Google Scholar 

  6. Boussarsar, M., Thierry, G., Jaber, S., Roudot-Thoraval, F., Lemaire, F., Brochard, L.: Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med. 28(4), 406–413 (2002)

    Article  Google Scholar 

  7. Gammon, R.B., Shin, M.S., Buchalter, S.E.: Pulmonary barotrauma in mechanical ventilation. Patterns and risk factors. Chest 102(2), 568–572 (1992)

    Article  Google Scholar 

  8. Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and intelligent decision support in intensive medicine – the complete picture. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2014. LNCS, vol. 8649, pp. 87–102. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Turban, E., Sharda, R., Delen, D.: Decision Support and Business Intelligence Systems, 9th edn. Prentice Hall (2011)

    Google Scholar 

  10. Torgo, L.: Data Mining with R: Learning with Case Studies. CRC Press - Taylor & Francis Group (2011)

    Google Scholar 

  11. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: Misc Functions of the Department of Statistics (e1071) (2012)

    Google Scholar 

  12. Cortez, P.: Simpler use of data mining methods (e.g. NN and SVM) in classification and regression (2013)

    Google Scholar 

  13. Witten, I., Frank, E., Hall, M.: Data Mining Pratical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann (2011)

    Google Scholar 

  14. Kantardzic, M.: Data Mining Concepts, Models, Methods, and Algorithms, 2nd edn. Wiley - IEEE Press (2011)

    Google Scholar 

  15. Ben-Hur, A., Weston, J.: A User’s Guide to Support Vector Machines. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences. Humana Press (2010)

    Google Scholar 

  16. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques, 3rd edn. Morgan Kaufmann (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Oliveira, S. et al. (2015). Predicting Plateau Pressure in Intensive Medicine for Ventilated Patients. In: Rocha, A., Correia, A., Costanzo, S., Reis, L. (eds) New Contributions in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 354. Springer, Cham. https://doi.org/10.1007/978-3-319-16528-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16528-8_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16527-1

  • Online ISBN: 978-3-319-16528-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics