Abstract
Identifying critical nodes in complex networks has become an important task across a variety of application domains. In this paper we propose a multi-objective version of the critical node detection problem, which aims to minimize pairwise connectivity in a graph by removing a subset of \(K\) nodes. Interestingly, while it has been recognized that this problem is inherently multi-objective since it was formulated, until now only single-objective algorithms have been proposed. After explicitly stating the new multi-objective problem variant, we then give a brief comparison of six common multi-objective evolutionary algorithms using sixteen common benchmark problem instances. A comparison of the results attained by viewing the algorithm as a single versus multi-objective problem is also conducted. We find that of the examined algorithms, NSGAII generally produces the most desirable approximation fronts. We also demonstrate that while related, the best multi-objective solutions do not translate into the best single-objective solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
MOEA Framework, version 2.1 (2014). http://www.moeaframework.org
Addis, B., Di Summa, M., Grosso, A.: Identifying critical nodes in undirected graphs: complexity results and polynomial algorithms for the case of bounded treewidth. Discret. Appl.Math. 161(16–17), 2349–2360 (2013)
Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 222–231 (2004)
Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)
Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005. Society for Industrial and Applied Mathematics, pp. 43–52 (2005)
Boginski, V., Commander, C.: Identifying critical nodes in protein-protein interaction networks. In: Benson, M. (ed.) Clustering Challenges in Biological Networks, pp. 153–166. Springer, Berlin (2009)
Chen, P., David, M., Kempe, D.: Better vaccination strategies for better people. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 179–188. ACM (2010)
Corne, D., Jerram, N., Knowles, J., Oates, M.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (2001)
Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. Technical report, IIT-Kanpur (2003)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees. Comput. Oper. Res. 38(12), 1766–1774 (2011)
Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619 (2012)
Dinh, T.N., Xuan, Y., Thai, M.T., Park, E.K., Znati, T.: On approximation of new optimization methods for assessing network vulnerability. In: INFOCOM, pp. 2678–2686 (2010)
DiSumma, M., Grosso, A., Locatelli, M.: Branch and cut algorithms for detecting critical nodes in undirected graphs. Comput. Optim. Appl. 53(3), 649–680 (2012)
Engelberg, R., Könemann, J., Leonardi, S., (Seffi) Naor, J.: Cut problems in graphs with a budget constraint. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 435–446. Springer, Heidelberg (2006)
Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)
Joyce, K.E., Laurienti, P.J., Burdette, J.H., Hayasaka, S.: A new measure of centrality for brain networks. PLoS ONE 5(8), e12200 (2010)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence in a social network. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)
Knowles, J., Corne, D.: The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, pp. 98–105 (1999)
Kollat, J., Reed, P.: Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv. Water Resour. 29(6), 792–807 (2006)
Kumar, V.S.A., Rajaraman, R., Sun, Z., Sundaram, R.: Existence theorems and approximation algorithms for generalized network security games. In: Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing Systems, pp. 348–357 (2010)
Nebro, A., Alba, E., Molina, G., Chicano, F., Luna, F., Durillo, J.: Optimal antenna placement using a new multi-objective CHC algorithm. In: 9th Annual Conference on Genetic and Evolutionary Computation, pp. 876–883 (2007)
Nguyen, D., Shen, Y., Thai, M.: Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–159 (2013)
Saran, H., Vazirani, V.: Finding k-cuts within twice the optimal. SIAM J. Comput. 24, 101–108 (1995)
Schott, J.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Massachusetts Institute of Technology (1995)
Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Comput. Oper. Res. 39(11), 2763–2775 (2012)
Ventresca, M., Aleman, D.: Evaluation of strategies to mitigate contagion spread using social network characteristics. Soc. Netw. 35(1), 75–88 (2013)
Ventresca, M., Aleman, D.: A derandomized approximation algorithm for the critical node detection problem. Comput. Oper. Res. 43, 261–270 (2014)
Ventresca, M., Aleman, D.: a fast greedy algorithm for the critical node detection problem. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 603–612. Springer, Heidelberg (2014)
Ventresca, M., Aleman, D.: A randomized algorithm with local search for containment of pandemic disease spread. Comput. Oper. Res. 48, 11–19 (2014)
Veremyev, A., Boginski, V., Pasiliao, E.L.: Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8(4), 1245–1259 (2014)
Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ventresca, M., Harrison, K.R., Ombuki-Berman, B.M. (2015). An Experimental Evaluation of Multi-objective Evolutionary Algorithms for Detecting Critical Nodes in Complex Networks. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-16549-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16548-6
Online ISBN: 978-3-319-16549-3
eBook Packages: Computer ScienceComputer Science (R0)