Abstract
In the last few decades the human vision system has been the focus of several researches, using it as a model for solving the object detection problem in digital images. In this work this approach is taken to define the algorithm called Artificial Visual Cortex (AVC) which is inspired in the information flow in the human visual cortex. Additionally, a new methodology for image description is proposed, which allows the detection and description of an object in the scene. Furthermore, this paper describes a new multi-objective learning technique called brain programming. This paradigm is implemented for the training stage of the proposed model in order to classify the persons set of the GRAZ-02 image database. The solutions found in this research outperform other techniques in the state-of-the-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fukushima, K.: Neural network model for selective attention in visual pattern recognition and associative recall. Appl. Opt. 26(23), 4985–4992 (1987)
Olshausen, B., Anderson, C., Van Essen, D.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13(11), 4700–4719 (1993)
Walther, D., Itti, L., Riesenhuber, M., Poggio, T.A., Koch, C.: Attentional selection for object recognition - a gentle way. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 11(2), 1019–1025 (1999)
Serre, T., Kouh, C., Cadieu, M., Knoblich, G., Kreiman, U., Poggio, T.: Theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Technical report. MIT-CSAIL (2005)
Mutch, J., Lowe, D.: Object class recognition and localization using sparse features with limited receptive fields. Int. J. Comput. Vis. 80(1), 45–57 (2008)
Wersing, H., Körner, E.: Learning optimized features for hierarchical models of invariant object recognition. Neural Comput. 15(7), 1559–1588 (2003)
Ghodrati, M., Khaligh-Razavi, S., Ebrahimpour, R., Rajaei, K., Pooyan, M.: How can selection of biologically inspired features improve the performance of a robust object recognition model? Plos One 7(2), 1–15 (2012)
Huang, Y., Huang, K., Tao, D., Tan, T., Li, X.: Enhanced biologically inspired model for object recognition. IEEE Trans. Syst. Man Cybern. B Cybern. 41(6), 1668–1680 (2011)
Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. psychol. 12(1), 97–136 (1980)
Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. 18, 193–222 (1995)
Biederman, I.: Recognition-by-components a theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)
Hubel, D.: Exploration of the primary visual cortex, 1955–78. Nature 299(5883), 515–524 (1982)
Mishkin, M., Ungerleider, L., Macko, K.: Object vision and spatial vision: two cortical pathways. TINS 6, 414–417 (1983)
Olague, G., Clemente, E., Dozal, L., Hernández, D.E.: Evolving an artificial visual cortex for object recognition with brain programming. In: Schuetze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 97–115. Springer, Heidelberg (2014)
Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985)
Olague, G., Dozal, L., Clemente, E., Ocampo, A.: Optimizing an artificial dorsal stream on purpose for visual attention. In: Schuetze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 141–166. Springer, Heidelberg (2014)
Milner, A., Goodale, M. (eds.): The Visual Brain in Action, 2nd edn. Oxford University Press, Oxford (2006)
Farivar, R.: Dorsal-ventral integration in object recognition. Brain Res. Rev. 61(2), 144–153 (2009)
Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 416–431 (2006)
Reid, P.: Biometrics for Network Security. Prentice Hall Professional, Upper Saddle River (2004)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Clemente, E., Olague, G., Hernández, D., L. Briseño, J., Mercado, J. (2015). Object Detection in Natural Images Using the Brain Programming Paradigm with a Multi-objective Approach. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-16549-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16548-6
Online ISBN: 978-3-319-16549-3
eBook Packages: Computer ScienceComputer Science (R0)