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Abstract

In this paper we present an evolutionary optimization approach to solve the risk parity
portfolio selection problem. While there exist convex optimization approaches to solve this
problem when long-only portfolios are considered, the optimization problem becomes non-
trivial in the long-short case. To solve this problem, we propose a genetic algorithm as
well as a local search heuristic. This algorithmic framework is able to compute solutions
successfully. Numerical results using real-world data substantiate the practicability of the
approach presented in this paper.

1 Introduction

The portfolio selection problem is concerned with finding an optimal portfolio x of assets from a
given set of n risky assets out of a pre-specified asset universe such that the requirements of the
respective investor are met. In general, investors seek to optimize their portfolio in regard of the
trade-off between return and risk, such that the meta optimization problem can be formulated
as shown in Eq. (1).

minimize Risk(x)
maximize Return(x) (1)

This bi-criteria optimization problem is commonly reduced to a single-criteria problem by just
focusing on the risk and constraining the required mean, i.e. the investor sets a lower expected
return target µ, which is shown in Eq. (2).

minimize Risk(x)
subject to Return(x) ≥ µ (2)

Markowitz [12] pioneered the idea of risk-return optimal portfolios using the standard devia-
tion of the portfolios profit and loss function as risk measure. In this case, the optimal portfolio
x is computed by solving the quadratic optimization problem shown in Eq. 3. The investor
needs to estimate a vector of expected returns r of the assets under consideration as well as the
covariance matrix C. Finally the minimum return target µ has to be defined. Any standard
quadratic programming solver can be used to solve this problem numerically.
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minimize xTCx
subject to r × x ≥ µ∑

x = 1
(3)

While this formulation has been successfully applied for a long time, criticism has sparked
recently. This is especially due to the problem of estimating the mean vector. To overcome this
problem one seeks optimization model formulations that solely depend on the covariance matrix.
Sometimes even simpler approaches are favored, e.g. the 1-over-N portfolio, which equally weights
every asset under consideration. It has been shown that there are cases, where this simple strategy
outperforms clever optimization strategies, see e.g. DeMiguel et al. [7].

Of course, the Markowitz problem can be simplified to a model without using returns easily
by dropping the minimum return constraint. In this case one receives the Minimum Variance
Portfolio (MVP), which is overly risk-averse.

One important technique used for practical portfolio purposes are risk-parity portfolios, where
the assets are weighted such that they equally contribute risk to the overall risk of the portfolio.
The properties of such portfolios are discussed by Maillard et al. [11] and alternative solution
approaches are shown by Chaves et al., see [5] and [6], as well as Bai et al. [1].

In this paper, an evolutionary optimization approach to compute optimal risk parity portfolios
will be presented. Evolutionary optimization approaches have been shown to be useful for solving
a wide range of different portfolio optimization problems, see e.g. [15] or [8] and the references
therein. See also the series of books on Natural Computing in Finance for more examples [2],
[3], [4].

This paper is organized as follows. Section 2 describes the risk-parity problem in detail,
Section 3 presents the evolutionary algorithm developed for solving the problem, and Section 4
presents numerical results. Finally, Section 5 concludes the paper.

2 Risk Parity Portfolio Selection

The type of risk-parity portfolios discussed in this paper are also called Equal Risk Contribution
(ERC) portfolios. The idea is to find a portfolio where the assets are weighted such that they
equally contribute risk to the overall risk of the portfolio.

We follow Maillard et al. [11] in their definition of risk contribution, i.e. reconsider the above
mentioned portfolio x = (x1, x2, . . . , xn) of n risky assets. Let C be the covariance matrix, σ2

i

the variance of asset i, and σij the covariance between asset i and j. Let σ(x) be the risk
(i.e. standard deviation) of the portfolio as defined in Eq. (4).

σ(x) =
√
xTCx =

∑
i

x2iσ
2
i +

∑
i

∑
j 6=i

xixjσij . (4)

Then the marginal risk contributions ∂xi
σ(x) of each asset i are defined as follows

∂xiσ(x) =
∂σ(x)

∂xi
=
xiσ

2
i +

∑
j 6=i xjσij

σ(x)
.

If we are considering long-only portfolios then the optimal solution can be written as an
optimization problem containing a logarithmic barrier term which is shown in Eq. (5) and where
c is an arbitrary positive constant. See e.g. also [16] for an alternative formulation. In this
long-only case, a singular optimal solution can be computed.
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minimize xTCx− c
∑n

i=1 lnxi
subject to xi > 0. (5)

However, if we want to include short positions then we need to find solutions in other orthants
than in the non-negative orthant. See Bai et al. [1] for a log-barrier approach in this case, which
is shown in Eq. (6).

minimize xTCx− c
∑n

i=1 lnβixi
subject to βixi > 0, (6)

where β = (β1, β2, . . . , βn) ∈ {−1, 1}n defines the orthant where the solution should be
computed. For each choice of β the above optimization problem is convex and can be solved
optimally. However, as shown in [1] there are 2n different solutions. Investors may add additional
constraints to specify their needs, however this cannot be modeled as one convex optimization
problem, which is why an evolutionary approach is presented here. The general formulation of
the long-short risk parity portfolio problem can be formulated as Eq. (7) as shown in [11].

minimize
∑n

i=1,j=1(xi(Cx)i − xj(Cx)j)
2

subject to ai ≤ xi ≤ bi,∑n
i=1 xi = 1.

(7)

3 Implementation

The solution is computed in two steps. First, a genetic algorithm will be employed and afterwards
a local search algorithm will be applied.

3.1 Genetic Algorithm

We are using a standard genetic algorithm to compute risk-parity optimal portfolios. The algo-
rithm was implemented using the statistical computing language R [13].

The fitness definition in the risk-parity setting is given by the deviance of each risk contribu-
tion from the mean of all risk contributions. Let us use the shorthand notation of ∆i = ∂xi

σ(x),
so we compute the expectation ∆ = E(∆i) and define the fitness f as the sum of the quadratic
distance of each risk contribution from the mean. This non-negative fitness value f has to be
minimized, where

f =
∑
i

(∆i −∆)2

We use a genotype-phenotype equivalent formulation, i.e. we use chromosomes of length n
which contain the specific portfolio weights of the n risky assets. Thus, an important operator
is the repair operator, i.e. the sum of the portfolio is normalized to 1 after each operation.

The genetic operators used in the algorithm can be summarized as follows:

Elitist selection: The best nES chromosomes of each population are kept in the population.
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Mutation: A random selection of nM chromosomes of the parent population will be mutated.
Up to a number of 15% of the length of the respective chromosome will be changed to a random
value between the portfolio bounds. Let ` be the length of the chromosome. First, a random
number between 0 and 0.15 is drawn. This number is multiplied by ` and rounded up to the
next integer value. This value represents the number of genes to be mutated. The mutation
positions will be chosen randomly. Afterwards the randomly selected positions will be replaced
with a random value between the upper and the lower investment limit of the respective asset.

Random addition: nR new and completely random chromosomes are added to each new
population.

Intermediate crossover: Two chromosomes from the parent population will be randomly
selected for an intermediate crossover. The mixing parameter between the two chromosomes
will also be chosen randomly. nIC crossover children will be added to the next population. Let
the mixing parameter be α and the two randomly chosen parent chromosomes p1 and p2 with
genes p1,1, . . . , p1,` and p2,1, . . . , p2,` respectively, where ` is the length of the chromosome. An
intermediate crossover will result in a child chromosome c where the genes are set to

ci = αp1,i + (1− α)p2,i ∀i = 1, . . . , `.

3.2 Local Search

In a second step, a local search algorithm is applied to the best solution of the genetic algorithm.
Thereby, within each iteration of the algorithm each asset weight of the n assets of the portfolio is
increased or decreased by a factor ε. Each of these (2×n) new portfolios is normalized and if one
exhibits a lower fitness value then this new portfolio will be used subsequently. The algorithm
terminates if no local improvement is possible anymore or the maximum number of iterations
has been reached.

4 Numerical Results

In this section the above described algorithm will be applied to real-world financial data to obtail
numerical results, which can be used for practical portfolio optimization purposes. The first test
using stock data from the DJIA index is described in Section 4.1 and both the long-only case
(Section 4.2) as well as the long-short case (Section 4.3) is discussed. To check for scalability the
algorithm is tested on all stocks of the S&P 100 index in Section 4.4 afterwards.

4.1 Financial Data and Setup

We use data from all stocks from the Dow Jones Industrial Average (DJIA) index using the
composition of September 20, 2013, i.e. using the stocks with the ticker symbols AXP, BA, CAT,
CSCO, CVX, DD, DIS, GE, GS, HD, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT,
NKE, PFE, PG, T, TRV, UNH, UTX, V, VZ, WMT, XOM.

Using the R package quantmod [14] we obtain daily adjusted closing data from Yahoo! Fi-
nance. We use data from the beginning of 2010 until the beginning of November 2014 to compute
the Variance-Covariance matrix, i.e. the matrix is entirely based on historical data. The data is
solely used for comparison purposes such that a clever approximation algorithm for the Variance-
Covariance matrix like those presented e.g. by [9] and [10] is not necessary for the purpose of
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Table 1: Parameters for the Genetic Algorithm.
Parameter Value
Initial population size 200
Maximum iterations 300
Elitist selection 10 top chromosomes from parent population
Random addition 50 new chromosomes
Mutation 100 chromosomes from parent population
Intermediate crossover 100 pairs of chromosomes from parent population
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Figure 1: Convergence of the genetic algorithm in the long-only case, i.e. the best (left) and the
mean (right) fitness value of each iteration along with the 5% as well as the 95% quantile of 100
instances.

this study. However it should be noted that the matrix is the important input parameter for the
calculation.

The parameters used for the genetic algorithm are shown in Table 1. The local search
algorithm was started twice, once with ε = 0.01 and subsequently with ε = 0.001. The number
of maximum local search steps has been set to 500.

4.2 Computing DJIA Long-Only Portfolios

First, we compute a set if various long-only portfolios without using expected returns, i.e. the
Minimum Variance Portfolio (MVP), the 1/N portfolio as well as the risk-parity portfolio using
the algorithm developed in this paper and described above. The results is shown in Table 2.
Please note that the risk contribution has been normalized to 1. The fitness of the 1/N portfolio
is 0.002253031, while the MVP exhibits a fitness of 0.00057129. The algorithm managed to find
the Risk Parity portfolio with a fitness of 0.0005019655. A lower fitness is not possible due to
the long-only constraint.

Furthermore, the convergence results in the long-only case can be seen in Fig. 1. The left
picture shows the best fitness over 300 iterations, while the right picture shows the mean of the
population fitness. The middle line depicts the mean of 100 instances while the upper and the
lower line depict the 5% as well as the 95% quantile of the instances.

In the long-only case, a simple random multi-start local search algorithm like the one described
in Section 3.2 above leads to the same result. We tested this by running it 100 times and
figured out that both the GA+Local as well as the Random+Local approach led to the same
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Table 2: DJIA - Long Only - MVP, 1/N, and Risk Parity.
x(MVP) RCn(MVP) x(1/N) RCn(1/N) x(RP) RCn(RP)

AXP 0.0000 0.0408 0.0300 0.0444 0.0000 0.0404
BA 0.0000 0.0374 0.0300 0.0411 0.0000 0.0366

CAT 0.0000 0.0420 0.0300 0.0484 0.0000 0.0413
CSCO 0.0000 0.0338 0.0300 0.0382 0.0000 0.0329
CVX 0.0000 0.0345 0.0300 0.0357 0.0000 0.0341

DD 0.0000 0.0382 0.0300 0.0410 0.0000 0.0376
DIS 0.0000 0.0383 0.0300 0.0394 0.0000 0.0384
GE 0.0000 0.0395 0.0300 0.0416 0.0000 0.0395
GS 0.0000 0.0370 0.0300 0.0451 0.0000 0.0356
HD 0.0000 0.0323 0.0300 0.0319 0.0000 0.0328

IBM 0.0207 0.0285 0.0300 0.0283 0.0000 0.0272
INTC 0.0000 0.0312 0.0300 0.0353 0.0000 0.0305

JNJ 0.2015 0.0285 0.0300 0.0218 0.0376 0.0257
JPM 0.0000 0.0424 0.0300 0.0502 0.0000 0.0417

KO 0.0038 0.0285 0.0300 0.0255 0.0275 0.0334
MCD 0.2421 0.0285 0.0300 0.0195 0.2333 0.0288

MMM 0.0000 0.0345 0.0300 0.0359 0.0000 0.0340
MRK 0.0000 0.0301 0.0300 0.0274 0.0000 0.0299

MSFT 0.0000 0.0308 0.0300 0.0327 0.0000 0.0307
NKE 0.0000 0.0343 0.0300 0.0365 0.0000 0.0347
PFE 0.0000 0.0306 0.0300 0.0289 0.0000 0.0300
PG 0.1890 0.0285 0.0300 0.0187 0.3050 0.0322

T 0.0745 0.0285 0.0300 0.0228 0.0330 0.0288
TRV 0.0000 0.0317 0.0300 0.0308 0.0000 0.0322
UNH 0.0000 0.0305 0.0300 0.0324 0.0000 0.0293
UTX 0.0000 0.0364 0.0300 0.0382 0.0000 0.0361

V 0.0000 0.0330 0.0300 0.0360 0.0000 0.0320
VZ 0.0554 0.0285 0.0300 0.0222 0.1072 0.0304

WMT 0.2130 0.0285 0.0300 0.0176 0.2565 0.0312
XOM 0.0000 0.0325 0.0300 0.0326 0.0000 0.0323
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Table 3: DJIA - Long-Short - Risk Parity.
AXP BA CAT CSCO CVX DD DIS GE GS HD

x -0.065 -0.010 -0.039 0.000 -0.015 -0.042 -0.060 -0.071 0.034 0.019
RCn 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

IBM INTC JNJ JPM KO MCD MMM MRK MSFT NKE
x 0.073 0.024 0.247 -0.050 0.010 0.257 0.015 0.012 0.021 -0.004

RCn 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
PFE PG T TRV UNH UTX V VZ WMT XOM

x 0.016 0.185 0.102 0.027 0.016 -0.020 0.013 0.076 0.211 0.019
RCn 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
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Figure 2: Convergence of the genetic algorithm in the long-short case, i.e. the best (left) and
the mean (right) fitness value of each iteration along with the 5% as well as the 95% quantile of
100 instances.

optimal portfolio in all cases. However, the optimal solution of the genetic algorithm needed
significantly less iterations compared to starting from random solutions. A statistical t-test
returned t = −60.5674 (df = 183.198) and a p-value of 0 with respect to the number of local
search iterations. However, this is different in the long-short case, which is described in the next
section.

4.3 Computing DJIA Long-Short Portfolios

In the long-short case, a random multi-start local search heuristic does not return any useful
result. However, the evolutionary approach works well. The long-short result with a lower
bound of −0.2 is shown in Table 3. The convergence results in the long-short case can be seen
in Fig. 2.

4.4 Scalability

To test for scalability of the algorithm, we used stocks from the S&P 100 index as of March 21,
2014. Again, we use historical data from the beginning of 2010 until the beginning of November
2014 to compute our Variance-Covariance matrix. Four stocks have been excluded due to data
issues, i.e. ABBV, FB, GM, and GOOG, such that the stocks with the following ticker symbols
have been considered: AAPL, ABT, ACN, AIG, ALL, AMGN, AMZN, APA, APC, AXP, BA,
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Figure 3: S&P 100 - portfolio (left) and risk contribution (right).

BAC, BAX, BIIB, BK, BMY, BRK.B, C, CAT, CL, CMCSA, COF, COP, COST, CSCO, CVS,
CVX, DD, DIS, DOW, DVN, EBAY, EMC, EMR, EXC, F, FCX, FDX, FOXA, GD, GE, GILD,
GS, HAL, HD, HON, HPQ, IBM, INTC, JNJ, JPM, KO, LLY, LMT, LOW, MA, MCD, MDLZ,
MDT, MET, MMM, MO, MON, MRK, MS, MSFT, NKE, NOV, NSC, ORCL, OXY, PEP, PFE,
PG, PM, QCOM, RTN, SBUX, SLB, SO, SPG, T, TGT, TWX, TXN, UNH, UNP, UPS, USB,
UTX, V, VZ, WAG, WFC, WMT, XOM.

The lower bound was set to −0.2. Fig. 3 shows the resulting portfolio as well as the risk
contribution of the assets. It can be seen that the algorithm arrives at a solution, which exhibits
a rather exact risk parity solution with only slight differences from a perfect solution, which can
be observed in the right plot of Fig. 3. To get a more detailed picture on the scalability, a
clearer analysis of the proportion between the contribution of the evolutionary solution as well
as the local search to the final solution would have to be accomplished, but this will be left out
for future research. From an investor’s perspective the optimal portfolio solution exhibits quite
a few number of assets, which would have to be shorted. To make the solution more realistic at
least a net exposure constraint would have to be added. A cardinality constraint on the number
of shorted assets would also be an option. Both constraints can be integrated rather easily in the
evolutionary context, see e.g. [19], [17], and [18]. However, such constraints would disable the
possiblity to obtain a perfect risk parity solution, which was the aim of the algorithm presented
in this paper.

5 Conclusion

In this paper, we presented an evolutionary approach to compute optimal risk parity portfolios.
This algorithm was designed to overcome the problem that only the long-only case can be solved
conveniently using convex optimization models. A two-step approach using a genetic algorithm
as well as a local search technique proved to be successful, especially in the long-short case.
Another advantage is that further constraints can be integrated directly into the algorithm and
this approach can be extended to other risk measures as well.
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