Abstract
In this paper we present an evolutionary optimization approach to solve the risk parity portfolio selection problem. While there exist convex optimization approaches to solve this problem when long-only portfolios are considered, the optimization problem becomes non-trivial in the long-short case. To solve this problem, we propose a genetic algorithm as well as a local search heuristic. This algorithmic framework is able to compute solutions successfully. Numerical results using real-world data substantiate the practicability of the approach presented in this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: how inefficient is the 1/n portfolio strategy? Rev. Financ. Stud. 22(5), 1915–1953 (2009)
Maillard, S., Roncalli, T., Teiletche, J.: The properties of equally weighted risk contribution portfolios. J. Portfolio Manage. 36(4), 60–70 (2010)
Chaves, D., Hsu, J., Li, F., Shakernia, O.: Risk parity portfolio vs. other asset allocation heuristic portfolios. J. Investing 20(1), 108–118 (2011)
Chaves, D., Hsu, J., Li, F., Shakernia, O.: Efficient algorithms for computing risk parity portfolio weights. J. Investing 21(3), 150–163 (2012)
Bai, X., Scheinberg, K., Tutuncu, R.: Least-squares approach to risk parity in portfolio selection (2013). SSRN: http://dx.doi.org/10.2139/ssrn.2343406 23 October 2013
Sharma, B., Thulasiram, R.K., Thulasiraman, P.: Portfolio management using particle swarm optimization on GPU. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 103–110. IEEE (2012)
Hochreiter, R.: Evolutionary stochastic portfolio optimization. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100, pp. 67–87. Springer, Heidelberg (2008)
Brabazon, A., O’Neill, M.: Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100. Springer, Heidelberg (2008)
Brabazon, A., O’Neill, M.: Natural Computing in Computational Finance, Volume 2. Studies in Computational Intelligence, vol. 185. Springer, Heidelberg (2009)
Brabazon, A., O’Neill, M., Maringer, D.: Natural Computing in Computational Finance, Volume 3. Studies in Computational Intelligence, vol. 293. Springer, Heidelberg (2010)
Spinu, F.: An algorithm for computing risk parity weights (2013). SSRN: http://dx.doi.org/10.2139/ssrn.2297383 30 July 2013
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2014)
Ryan, J.A.: Quantmod: Quantitative Financial Modelling Framework (2014). R package version 0.4-2
Ledoit, O., Wolf, M.: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Finance 10(5), 603–621 (2003)
Ledoit, O., Wolf, M.: Honey, i shrunk the sample covariance matrix. J. Portfolio Manage. 30(4), 110–119 (2004)
Streichert, F., Ulmer, H., Zell, A.: Evolutionary algorithms and the cardinality constrained portfolio optimization problem. In: Dino Ahr, D.I., Fahrion, R., Oswald, M., Reinelt, G. (eds.) Operations Research Proceedings 2003, pp. 253–260. Springer, Heidelberg (2004)
Streichert, F., Ulmer, H., Zell, A.: Comparing discrete and continuous genotypes on the constrained portfolio selection problem. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1239–1250. Springer, Heidelberg (2004)
Streichert, F., Ulmer, H., Zell, A.: Evaluating a hybrid encoding and three crossover operators on the constrained portfolio selection problem. In: Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 932–939. IEEE (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hochreiter, R. (2015). An Evolutionary Optimization Approach to Risk Parity Portfolio Selection. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-16549-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16548-6
Online ISBN: 978-3-319-16549-3
eBook Packages: Computer ScienceComputer Science (R0)