Abstract
In this paper we face the problem of accurate location of a laser spot that is used as interaction system in real environments. The work presented is compared with previous approaches where different algorithms work with a single objective, using images that has been previously simplified to reduce computing time. Instead, the new approach presented in this paper is capable of processing whole images. The results show that the inclusion of multi-objective methods allows us not only to detect the presence of the laser spot, the single objective in previous works, but also to obtain accurate information of the laser spot in the image, and thus provide the location of the device on which the user wants to act.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chan, M., Estève, D., Escriba, C., Campo, E.: A review of smart homes-present state and future challenges. Comput. Meth. Prog. Biomed. 91(1), 55–81 (2008)
Chávez, F., Fernández, F., Alcalá, R., Alcalá-Fdez, J., Herrera, F.: Evolutionary learning of a laser pointer detection fuzzy system for an environment control system. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 256–263 (2011)
Chávez, F., Fernández, F., Alcalá, R., Alcalá-Fdez, J., Olague, G., Herrera, F.: Hybrid laser pointer detection algorithm based on template matching and fuzzy rule-based systems for domotic control in real home environments. Appll. Intell., 1–17 (2010). doi:10.1007/s10489-010-0268-6
Chávez, F., Fernández, F., Alcalá-Fdez, J., Alcalá, R., Herrera, F., Olague, G.: Genetic tuning of a laser pointer environment control device system for handicapped people with fuzzy systems. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 1–8 (2010)
Chávez, F., Fernández, F., Gacto, M., Alcalá, R.: Automatic laser pointer detection algorithm for environment control device systems based on template matching and genetic tuning of fuzzy rule-based systems. Int. J. Comput. Intell. Syst. 5(2), 368–386 (2012)
Chávez, F., Clemente, E., Dozal, L., Fernández de Vega, F., Olague, G.: Auto-Ajuste del Foco de Atencion para la Mejora de un Sistema de Deteccion de Punto Laser. Congreso Espaol de Informtica., 713–722 (2013)
Clemente, E., Chávez, F., Dozal, L., Fernández de Vega, F., Olague, G.: Self-adjusting focus of attention by means of GP for improving a laser point detection system. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, pp. 1237–1244 (2013)
Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object recognition with an optimized ventral stream model using genetic programming. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg (2012)
Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. 18, 193–222 (1995)
Dozal, L., Olague, G., Clemente, E., Sánchez, M.: Evolving visual attention programs through EVO features. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 326–335. Springer, Heidelberg (2012)
Kemp, C., Anderson, C., Nguyen, H., Trevor, A., Xu, Z.: A point-and-click interface for the real world: laser designation of objects for mobile manipulation. In: 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI 2008), pp. 241–248 (2008)
Kim, N.W., Lee, S.-J., Lee, B.-G., Lee, J.-J.: Vision based laser pointer interaction for flexible screens. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4551, pp. 845–853. Springer, Heidelberg (2007)
Nakashima, H., Aghajan, H., Augusto, J.C.: Handbook of Ambient Intelligence and Smart Environments. Springer, New York (2010)
Olague, G.: Evolutionary Computer Vision - The First Footprints. Springer (to appear)
Olague, G., Clemente, E., Dozal, L., Hernández, D.E.: Evolving an artificial visual cortex for object recognition with brain programming. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 97–119. Springer, Heidelberg (2014)
Olague, G., Dozal, L., Clemente, E., Ocampo, A.: Optimizing an artificial dorsal stream on purpose for visual attention. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 141–166. Springer, Heidelberg (2014)
Pérez, C.B., Olague, G.: Evolutionary learning of local descriptor operators for object recognition. In: GECCO, pp. 1051–1058 (2009)
Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)
Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neurosci. 11(2), 1019–1025 (1999)
Dozal, L., Olague, G., Clemente, E., Hernndez, D.E.: Brain programming for the evolution of an artificial dorsal stream. Cogn. Comput. 6(3), 528–557 (2014)
Nakib, A., Oulhadj, H., Siarry, P.: Image histogram thresholding based on multiobjective optimization. Signal Process. 87(11), 2516–2534 (2007)
Shirakawa, S., Nagao, T.: Evolutionary image segmentation based on multiobjective clustering. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 2466–2473 (2009)
Nakib, A., Oulhadj, H., Siarry, P.: Non-supervised image segmentation based on multiobjective optimization. Pattern Recogn. Lett. 29(2), 161–172 (2008)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Acknowledgments
This work was supported by the Seventh Framework Programme of the European Union through the International Research Staff Plan Marie Curie, FP7-PEOPLE-2013-IRSES, ACoBSEC 612,689 Grant, Ministerio de Educación, Cultura y Deporte of Spain under the project TIN2011-28627-C04-03, Gobierno de Extremadura, Consejería de Economía Comercio e Innovación and FEDER, GRU10029 project. This work has also been supported by CONACyT México through the project 155045–“Evolución de Cerebros Artificiales en Visión por Computador”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chávez, F., Clemente, E., Hernández, D.E., de Vega, F.F., Olague, G. (2015). A Multi-objective Evolutionary Algorithm for Interaction Systems Based on Laser Pointers. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-16549-3_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16548-6
Online ISBN: 978-3-319-16549-3
eBook Packages: Computer ScienceComputer Science (R0)