Skip to main content

Multi-Noisy-Hard-Objective Robust Design of Balanced Surface Acoustic Wave Filters Based on Prediction of Worst-Case Performance

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

  • 1782 Accesses

Abstract

This paper presents a novel computer-aided design method of Surface Acoustic Wave (SAW) filters which are widely used in the modern RF circuits of mobile communication systems. The performance of a SAW filter is specified by a number of criteria. Besides, the performance is deteriorated due to the uncertainties of physical coefficients and design parameters. In the multi-noisy-objective optimization problem of the SAW filter, the worst-case performance of a solution is considered based on the upper bounds of respective noisy-objective functions predicted statistically by multiple sampling. For finding various solutions for the problem effectively, a new evolutionary algorithm is proposed with three sample saving techniques. Finally, the influence of noise on the SAW filter is discussed through analysis of the obtained solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bockelman, D.E., Eisenstadt, W.R.: Combined differential and common-mode scattering parameters: theory and simulation. IEEE Trans. Microw. Theory Tech. 43(7), 1530–1539 (1995)

    Article  Google Scholar 

  2. Branke, J., Avigad, G., Moshaiov, A.: Multi-objective worst case optimization by means of evolutionary algorithms. Working Paper. WBS, University of Warwick, Coventry (2013). http://dx.doi.org/10.1016/j.ejor.2014.03.013

  3. Brest, J., Greiner, S., Bos̆ković, B., Merink, M., Z̆umer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  4. Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. (2014). http://dx.doi.org/10.1016/j.ejor.2014.03.013

  8. Fieldsend, J.E., Everson, R.M.: The rolling tide evolutionary algorithm: a multi-objective optimizer for noisy optimization problems. IEEE Trans. Evol. Comput. 19, 103–117 (2014)

    Article  Google Scholar 

  9. Hashimoto, K.: Surface Acoustic Wave Devices in Telecommunications - Modeling and Simulation. Springer, Heidelberg (2000)

    Book  Google Scholar 

  10. Kojima, T., Suzuki, T.: Fundamental equations of electro-acoustic conversion for an interdigital surface-acoustic-wave transducer by using force factors. Jpn. J. Appl. Phys. Suppl. 13, 194–197 (1992)

    Article  Google Scholar 

  11. Kuroiwa, D., Lee, G.M.: On robust multiobjective optimization. Vietnam J. Math. 40(2&3), 305–317 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Lu, X., Mouthaan, K., Soon, Y.T.: Wideband bandpass filters with SAW-filter-like selectivity using chip SAW resonators. IEEE Trans. Microw. Theory Tech. 62(1), 28–36 (2014)

    Article  Google Scholar 

  13. Nakamura, H., Komatsu, T., Nakanishi, H., Tsurunari, T., Fujiwara, J.: Reduction of transverse leakage for SAW resonators on LiTaO\(_{3}\) substrate. In: Proceedings of the IEEE International Ultrasonics Symposium, pp. 1248–1251 (2012)

    Google Scholar 

  14. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  15. Rakshit, P., Konar, A., Das, S., Jain, L.C., Nagar, A.K.: Uncertainty management in differential evolution induced multiobjective optimization in presence of measurement noise. IEEE Trans. Syst. Man Cybern. Syst. 44(7), 922–937 (2013)

    Article  Google Scholar 

  16. Shim, V.A., Tan, K.C., Chia, J.Y., Mamun, A.A.: Multi-objective optimization with estimation of distribution algorithm in a noisy environment. Evol. Comput. 21(1), 149–177 (2013)

    Article  Google Scholar 

  17. Soares, G.L., Adriano, R.L.S., Maia, C.A., Jaulin, L., Vasconcelos, J.A.: Robust multi-objective TEAM22 problem: a case study of uncertainties in design optimization. IEEE Trans. Magn. 45(3), 1028–1031 (2009)

    Article  Google Scholar 

  18. Tagawa, K., Harada, S.: Multi-noisy-objective optimization based on prediction of worst-case performance. In: Dediu, A.-H., Lozano, M., Martín-Vide, C. (eds.) TPNC 2014. LNCS, vol. 8890, pp. 23–34. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Tagawa, K., Imamura, A.: Many-hard-objective optimization using differential evolution based on two-stage constraint-handling. In: Proceedings of the GECCO 2013, pp. 671–678 (2013)

    Google Scholar 

  20. Tagawa, K., Sasaki, Y., Nakamura, H.: Optimum design of balanced SAW filters using multi-objective differential evolution. In: Deb, K., et al. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 466–475. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Voß, T., Trautmann, H., Igel, C.: New uncertainty handling strategies in multi-objective evolutionary optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 260–269. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoharu Tagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tagawa, K., Harada, S. (2015). Multi-Noisy-Hard-Objective Robust Design of Balanced Surface Acoustic Wave Filters Based on Prediction of Worst-Case Performance. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics