Abstract
The Seed Disperser Ant Algorithm (SDAA) is inspired from the evolution of Seed Disperser Ant (Aphaenogaster senilis) colony. The ants in the colony are highly related siblings sharing average 75 % similarity in genotype. Hence, the genotype of every ant represents variables in binary form that are used to locally search for optimum solution. Once the colony matures, in other words a local optimum solution reached, nuptial flights take place where female genotype copies the male genotype originating from another colony. Once all colonies saturate new young queen emerges to establish new colonies. This diversifies the search for global optimum. The SDAA is validated by solving four 30 dimensional classical benchmark problems and six composite benchmark functions from CEC 2005 special session. The optimal results are found to be better than the selected state-of-the-art swarm intelligence based optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, New York, NY (1995)
Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature & Biologically Inspired Computing, 2009, NaBIC 2009. IEEE (2009)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Miranda, V., Fonseca, N.: EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems. In: Proceedings of the Asia Pacific IEEE/PES Transmission and Distribution Conference and Exhibition. Citeseer (2002)
Lee, T.-Y., Chen, C.-L.: Unit commitment with probabilistic reserve: An IPSO approach. Energy Convers. Manag. 48(2), 486–493 (2007)
Jamian, J.J., et al.: Global particle swarm optimization for high dimension numerical functions analysis. J. Appl. Math. 2014, 14 (2014)
Liu, L., Zhong, W.-M., Qian, F.: An improved chaos-particle swarm optimization algorithm. J. East China Univ. Sci. Technol. 36(2), 267–272 (2010)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Kulkarni, A.J., Durugkar, I.P., Kumar, M.: Cohort intelligence: A self supervised learning behavior. In: Systems, 2013 IEEE International Conference on Man, and Cybernetics (SMC). IEEE (2013)
Mitchell, M.: An Introduction to Genetic Algorithms. MIT press, Cambridge (1998)
Goldberg, D.E., et al.: Genetic algorithms: A bibliography. Urbana 51, 61801 (1997)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, Vol. 826, p. 1989 (1989)
Moscato, P., Cotta, C., Mendes, A.: Memetic algorithms. In: New Optimization Techniques in Engineering, pp. 53–85. Springer, New York (2004)
Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE Congress on Evolutionary Computation, 2005. IEEE (2005)
Cheron, B., et al.: Queen replacement in the monogynous ant Aphaenogaster senilis: supernumerary queens as life insurance. Anim. Behav. 78(6), 1317–1325 (2009)
Ashton, M.C., et al.: Kin altruism, reciprocal altruism, and the Big Five personality factors. Evol. Hum. Behav. 19(4), 243–255 (1998)
Osiński, J.: Kin altruism, reciprocal altruism and social discounting. Personality Individ. Differ. 47(4), 374–378 (2009)
Kenne, M., Dejean, A.: Nuptial flight of myrmicaria opaciventris. Sociobiology 31(1), 41–50 (1998)
Queller, D.C., Strassmann, J.E.: Kin selection and social insects. Bioscience 48, 165–175 (1998)
Adorio, E.P., Diliman, U.: Mvf-multivariate test functions library in c for unconstrained global optimization. Technical report, Department of Mathematics, UP Diliman (2005)
Molga, M., Smutnicki, C.: Test functions for optimization needs (2005). http://eccsia013.googlecode.com/svn/trunk/Ecc1/functions_benchmark.pdf
Shang, Y.-W., Qiu, Y.-H.: A note on the extended Rosenbrock function. Evol. Comput. 14(1), 119–126 (2006)
Kulkarni, A.J., Tai, K.: Probability collectives: a decentralized, distributed optimization for multi-agent systems. In: Mehnen, J., Köppen, M., Saad, A., Tiwari, A. (eds.) Applications of Soft Computing. ASC, vol. 58, pp. 441–450. Springer, Heidelberg (2009)
Xu, W., et al.: A piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimization. Inf. Sci. 218, 85–102 (2013)
Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999, CEC 1999. IEEE (1999)
Liang, J., Suganthan, P., Deb, K.: Novel composition test functions for numerical global optimization. In: Swarm Intelligence Symposium, 2005, SIS 2005, Proceedings 2005 IEEE. IEEE (2005)
Acknowledgement
This work is supported by ER011-2013A, Ministry of Science, Technology and Innovation, Malaysia (MOSTI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix A
Appendix A
Composite benchmark functions
|
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chang, W.L., Kanesan, J., Kulkarni, A.J. (2015). Seed Disperser Ant Algorithm: An Evolutionary Approach for Optimization. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-16549-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16548-6
Online ISBN: 978-3-319-16549-3
eBook Packages: Computer ScienceComputer Science (R0)