Skip to main content

Neuro-evolutionary Topology Optimization with Adaptive Improvement Threshold

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

Abstract

Recently a hybrid combination of neuro-evolution with a gradient-based topology optimization method was proposed, facilitating topology optimization of structures subject to objective functions for which gradient information is difficult to obtain. The approach substitutes analytical sensitivity information by an update signal represented by a neural network approximation model. Topology optimization is performed by optimizing the network parameters by an evolutionary algorithm in order to devise an update signal for each design step. However, the typically very large number of required evaluations renders the method difficult to apply in practice. In this paper, we aim at a more efficient use of computational resources by augmenting the original approach by an adaptive improvement threshold as stopping criterion for the neuro-evolution. The original and augmented methods are studied on the minimum compliance problem for different feature types and different number of hidden neurons. It is demonstrated that the number of evaluations can be reduced by up to \(80\,\%\) with very little change of the resulting objective values and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deaton, J., Grandhi, R.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multi. Optim. 49(1), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  2. Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multi. Optim. 48(6), 1031–1055 (2013)

    MathSciNet  Google Scholar 

  3. Bendsøe, M., Sigmund, O.: Topology Optimization Theory, Methods and Applications, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  4. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B., Sigmund, O.: Efficient topology optimization in matlab using 88 lines of code. Struct. Multi. Optim. 43(1), 1–16 (2011)

    Article  MATH  Google Scholar 

  5. Ahmed, F., Bhattacharya, B., Deb, K.: Constructive solid geometry based topology optimization using evolutionary algorithm. In: Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K. (eds.) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). AISC, vol. 201, pp. 227–238. Springer, India (2013)

    Chapter  Google Scholar 

  6. Wu, C.-Y., Tseng, K.-Y.: Topology optimization of structures using modified binary differential evolution. Struct. Multi. Optim. 42(6), 939–953 (2010)

    Article  Google Scholar 

  7. Balamurugan, R., Ramakrishnan, C., Swaminathan, N.: A two phase approach based on skeleton convergence and geometric variables for topology optimization using genetic algorithm. Struct. Multi. Optim. 43(3), 381–404 (2011)

    Article  Google Scholar 

  8. Madeira, J., Pina, H., Rodrigues, H.: GA topology optimization using random keys for tree encoding of structures. Struct. Multi. Optim. 40(1–6), 227–240 (2010)

    Article  MATH  Google Scholar 

  9. Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., Sebag, M.: Compact unstructured representations for evolutionary design. Appl. Intell. 16(2), 139–155 (2002)

    Article  MATH  Google Scholar 

  10. Pedro, H.-T.C., Kobayashi, M.H.: On a cellular division method for topology optimization. Int. J. Numer. Methods Eng. 88(11), 1175–1197 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Steiner, T., Trommler, J., Brenn, M., Jin, Y., Sendhoff, B.: Global shape with morphogen gradients and motile polarized cells. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation. IEEE, Trondheim (2009)

    Google Scholar 

  12. Evins, R., Vaidyanathan, R., Burgess, S.: Multi-material compositional pattern-producing networks for form optimisation. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 189–200. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Cheney, N., Ritz, E., Lipson, H.: Automated vibrational design and natural frequency tuning of multi-material structures. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, Vancouver, BC, Canada, pp. 1079–1086. ACM, New York (2014)

    Google Scholar 

  14. Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. Struct. Multi. Optim. 43(5), 589–596 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Aulig, N., Olhofer, M.: Evolutionary generation of neural network update signals for the topology optimization of structures. In: Proceeding of the Fifteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion, GECCO 2013 Companion, Amsterdam, Netherlands, pp. 213–214. ACM, New York (2013)

    Google Scholar 

  16. Aulig, N., Olhofer, M.: Neuro-evolutionary topology optimization of structures by utilizing local state features. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, Vancouver, BC, Canada, pp. 967–974. ACM, New York (2014)

    Google Scholar 

  17. Bendsøe, M.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  18. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multi. Optim. 33(4–5), 401–424 (2007)

    Article  Google Scholar 

  19. Hansen, N., Kern, S.: The CMA evolution strategy: A comparing review. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Heidrich-Meisner, V., Igel, C.: Neuroevolution strategies for episodic reinforcement learning. J. Algorithms 64(4), 152–168 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Aulig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aulig, N., Olhofer, M. (2015). Neuro-evolutionary Topology Optimization with Adaptive Improvement Threshold. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics