Abstract
This paper presents a study of the efficacy of comparative controller design methods that aim to produce generalised problem solving behaviours. In this case study, the goal was to use neuro-evolution to evolve generalised maze solving behaviours. That is, evolved robot controllers that solve a broad range of mazes. To address this goal, this study compares objective, non-objective and hybrid approaches to direct the search of a neuro-evolution controller design method. The objective based approach was a fitness function, the non-objective based approach was novelty search, and the hybrid approach was a combination of both. Results indicate that, compared to the fitness function, the hybrid and novelty search evolve significantly more maze solving behaviours that generalise to larger and more difficult maze sets. Thus this research provides empirical evidence supporting novelty and hybrid novelty-objective search as approaches for potentially evolving generalised problem solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goertzel, B., Pennachin, C.: Artificial General Intelligence. Springer, Heidelberg (2007)
Schmidhuber, J.: Ultimate cognition à la gödel. Cogn. Comput. 1(2), 177–193 (2009)
Hutter, M.: Universal Artificial Intelligence. Springer, Heidlberg (2005)
Looks, M., Goertzel, B., Pennachin, C.: Novamente: an integrative architecture for general intelligence. In: AAAI Fall Symposium, Achieving Human-Level Intelligence (2004)
Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–72 (2005)
Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: AAAI, vol. 8, pp. 259–264 (2008)
Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intel. 1(1), 47–62 (2008)
Rozin, P.: The evolution of intelligence and access to the cognitive unconscious. In: Sprague, J.M., Epstein, A.N. (eds.) Progress in Psychology, pp. 245–280. Academic Press, New York (1976)
Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
Lehman, J., Stanley, K.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)
Gomez, F., Miikkulainen, R.: Solving non-markovian control tasks with neuroevolution. In: IJCAI, vol. 99, pp. 1356–1361 (1999)
Gomez, F.J., Schmidhuber, J., Miikkulainen, R.: Efficient non-linear control through neuroevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 654–662. Springer, Heidelberg (2006)
Velez, R., Clune, J.: Novelty search creates robots with general skills for exploration. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 737–744. ACM (2014)
Shorten, D., Nitschke, G.: How evolvable is novelty search? (2014)
Clune, J., Beckmann, B., Ofria, C., Pennock, R.: Evolving coordinated quadruped gaits with the hyperneat generative encoding. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 2764–2771. IEEE (2009)
Coleman, O., Blair, A., Clune, J.: Automated generation of environments to test the general learning capabilities of AI agents
Richards, N., Moriarty, D., Miikkulainen, R.: Evolving neural networks to play go. Appl. Intell. 8(1), 85–96 (1998)
Yong, C., Miikkulainen, R.: Coevolution of role-based cooperation in multiagent systems. IEEE Trans. Auton. Mental Dev. 1(3), 170–186 (2009)
Shorten, D., Nitschke, G.: Generational neuro-evolution: restart and retry for improvement. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 225–232. ACM (2014)
Koppejan, R., Whiteson, S.: Neuroevolutionary reinforcement learning for generalized helicopter control. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 145–152. ACM (2009)
Rajagopalan, P., Rawal, A., Holekamp, K., Miikkulainen, R.: General intelligence through prolonged evolution of densely connected neural networks. In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, pp. 35–36. ACM (2014)
Lehman, J., Stanley, K.: Efficiently evolving programs through the search for novelty. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 837–844. ACM (2010)
Urbano, P., Georgiou, L.: Improving grammatical evolution in santa fe trail using novelty search. In: Advances in Artificial Life, ECAL, vol. 12, pp. 917–924 (2013)
Cuccu, G., Gomez, F., Glasmachers, T.: Novelty-based restarts for evolution strategies. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 158–163. IEEE (2011)
Lehman, J., Stanley, K.: Revising the evolutionary computation abstraction: minimal criteria novelty search. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 103–110. ACM (2010)
Gomes, J., Urbano, P., Christensen, A.L.: Progressive minimal criteria novelty search. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 281–290. Springer, Heidelberg (2012)
Inden, B., Jin, Y., Haschke, R., Ritter, H., Sendhoff, B.: An examination of different fitness and novelty based selection methods for the evolution of neural networks. Soft Comput. 17(5), 753–767 (2013)
Kistemaker, S., Whiteson, S.: Critical factors in the performance of novelty search. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 965–972. ACM (2011)
Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)
Stanley, K., Bryant, B., Miikkulainen, R.: Real-time neuroevolution in the nero video game. IEEE Trans. Evol. Comput. 9(6), 653–668 (2005)
Xu, J., Kaplan, C.: Image-guided maze construction. ACM Trans. Graph. (TOG) 26, 29 (2007)
Pullen, W.: Think labyrinth: Daedalus (2014)
Osmankovic, D., Konjicija, S.: Implementation of q learning algorithm for solving maze problem. In: MIPRO, 2011 Proceedings of the 34th International Convention, pp. 1619–1622. IEEE (2011)
Gregor, D., Troyer, M.: Boost. mpi (2006)
Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes. Cambridge University Press, Cambridge (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Shorten, D., Nitschke, G. (2015). Evolving Generalised Maze Solvers. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_63
Download citation
DOI: https://doi.org/10.1007/978-3-319-16549-3_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16548-6
Online ISBN: 978-3-319-16549-3
eBook Packages: Computer ScienceComputer Science (R0)