Skip to main content

Evolving Controllers for Programmable Robots to Influence Non-programmable Lifeforms: A Casy Study

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

  • 1761 Accesses

Abstract

In this paper, a decentralized reaction-diffusion-based controller is evolved for a set of robots in an arena interacting with two simulated juvenile bees as non-programmable agents. The bees react to the stimuli that are emitted by the robots. The evolutionary process successfully finds controllers that produce proper patterns which guide the bees towards a number of given targets. The results show a preference of heat as the dominant stimulus causing movement of the bees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this regard, AHHS is similar to Gene Regulatory Networks (GRNs).

References

  1. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  2. Bongard, J.: Evolutionary robotics. Commun. ACM 56, 74–83 (2013)

    Article  Google Scholar 

  3. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organizing Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  4. Saverino, C., Gerlai, R.: The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav. Brain Res. 191, 77–87 (2008)

    Article  Google Scholar 

  5. Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., Crailsheim, K.: Dynamics of collective decision making of honeybees in complex temperature fields. PLoS ONE 8, e76250 (2013)

    Article  Google Scholar 

  6. Schmickl, T., et al.: ASSISI: mixing animals with robots in a hybrid society. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 441–443. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Zahadat, P., Bodi, M., Salem, Z., Bonnet, F., de Oliveira, M.E., Mondada, F., Griparic, K., Haus, T., Bogdan, S., Mills, R., Mariano, P., Correia, L., Kernbach, O., Kernbach, S., Schmickl, T.: Social adaptation of robots for modulating self-organization in animal societies. In: Proceedings of the 2nd FoCAS Workshop on Fundamentals of Collective Systems (2014)

    Google Scholar 

  8. Berthold, R., Benton, A.W.: Honey bee photoresponse as influenced by age. Part I. workers. Ann. Entomol. Soc. Am. 63, 136–139(4) (1969)

    Article  Google Scholar 

  9. Nieh, J.C.: The stop signal of honey bees: reconsidering its message. Behav. Ecol. Sociobiol. 33, 51–56 (1993)

    Article  Google Scholar 

  10. Driever, W., Nusslein-Volhard, C.: The bicoid protein determines position in the drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988)

    Article  Google Scholar 

  11. Ephrussi, A., Johnston, D.S.: Seeing is believing - the bicoid morphogen gradient matures. Cell 116, 143–152 (2004)

    Article  Google Scholar 

  12. Wolpert, L.: The French Flag problem: a contribution to the discussion on pattern development and regulation. In: Waddington, C.H. (ed.) The Origin of Life: Toward a Theoretical Biology, pp. 125–133. Aldine Publishing Company, Chicago (1968)

    Google Scholar 

  13. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Bowers, C.P.: Simulating evolution with a computational model of embryogeny: obtaining robustness from evolved individuals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 149–158. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Gordon, T.G.W., Bentley, P.J.: Bias and scalability in evolutionary development. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 83–90. ACM, New York (2005)

    Google Scholar 

  16. Chavoya, A., Duthen, Y.: Use of a genetic algorithm to evolve an extended artificial regulatory network for cell pattern generation. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1062–1062. ACM, New York (2007)

    Google Scholar 

  17. Federici, D.: Using embryonic stages to increase the evolvability of development. In: GECCO 2004 Workshop Proceedings, Seattle, Washington, USA (2004)

    Google Scholar 

  18. Devert, A., Bredeche, N., Schoenauer, M.: Robustness and the halting problem for multicellular artificial ontogeny. IEEE Trans. Evol. Comput. 15, 387–404 (2011)

    Article  Google Scholar 

  19. Schmickl, T., Crailsheim, K.: Modelling a hormone-based robot controller. In: MATHMOD 2009–6th Vienna International Conference on Mathematical Modelling (2009)

    Google Scholar 

  20. Stradner, J., Hamann, H., Schmickl, T., Crailsheim, K.: Analysis and implementation of an artificial homeostatic hormone system: a first case study in robotic hardware. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 595–600. IEEE Press (2009)

    Google Scholar 

  21. Zahadat, P., Schmickl, T.: Generation of diversity in a reaction-diffusion-based controller. Artif. Life 20, 319342 (2014)

    Article  Google Scholar 

  22. Zahadat, P., Crailsheim, K., Schmickl, T.: Evolution of spatial pattern formation by autonomous bio-inspired cellular controllers. In: Lio, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) 12th European Conference on Artificial Life (ECAL 2013), pp. 721–728. MIT Press (2013)

    Google Scholar 

  23. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. London. B Biol. Sci. B237, 37–72 (1952)

    Article  Google Scholar 

  24. Zahadat, P., Schmickl, T.: Wolfpack-inspired evolutionary algorithm and a reaction-diffusion-based controller are used for pattern formation. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 241–248. ACM, New York (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported by: EU-ICT project ‘ASSISI_bf’, no. 601074; Austrian Federal Ministry of Science and Research (BM.W F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Zahadat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zahadat, P., Schmickl, T. (2015). Evolving Controllers for Programmable Robots to Influence Non-programmable Lifeforms: A Casy Study. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics