Abstract
We propose and experiment a practical multi-level approach to maintain contradiction-free knowledge when some incoming additional information that can contradict the preexisting knowledge must be taken into account. The approach implements an any-time strategy that triggers successive reasoning paradigms ranging from credulous to computationally more intensive forms of skepticism about conflicting information. It makes use of recent dramatic computational progress in constraint satisfaction techniques for finite domains and Boolean-related search and reasoning. Interestingly, the structure of the approach and the involved techniques also apply for the more general issue of handling contradictory knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Béziau, J.-Y., Carnielli, W., Gabbay, D.M.: Handbook of Paraconsistency. Studies in Logic. College Publications (2007)
Ginsberg, M.L.: Readings in nonmonotonic reasoning. M. Kaufmann Publishers (1987)
Fermé, E.L., Hansson, S.O.: AGM 25 years - twenty-five years of research in belief change. J. Philosophical Logic 40(2), 295–331 (2011)
Grégoire, É., Konieczny, S.: Logic-based approaches to information fusion. Information Fusion 7(1), 4–18 (2006)
Zhang, D., Grégoire, É.: The landscape of inconsistency: a perspective. Int. J. Semantic Computing 5(3), 235–256 (2011)
Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)
Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley (2009)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
Marques-Silva, J., Janota, M.: On the query complexity of selecting few minimal sets. Electronic Colloquium on Computational Complexity (ECCC) 21, 31 (2014)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425 (1991)
Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. Journal of Computer and System Sciences 37(1), 2–13 (1988)
Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artificial Intelligence 57(2-3), 227–270 (1992)
Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In: Proceedings of the International Conference on Formal Methods in Computer-Aided Design (FMCAD 2011), pp. 37–40 (2011)
Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013 (2013)
Liffiton, M.H., Malik, A.: Enumerating infeasibility: Finding multiple mUSes quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 160–175. Springer, Heidelberg (2013)
Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292. Springer, Heidelberg (2013)
Grégoire, É., Lagniez, J.-M., Mazure, B.: An experimentally efficient method for (MSS,CoMSS) partitioning. In: Proceedings of the 28th Conference on Artificial Intelligence (AAAI 2014), pp. 2666–2673 (2014)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)
Grégoire, É., Mazure, B., Piette, C.: Boosting a complete technique to find MSS and MUS thanks to a local search oracle. In: International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2300–2305 (2007)
Hamscher, W., Console, L., de Kleer, J.: Readings in Model-Based Diagnosis. Morgan Kaufmann (1992)
Feldman, A., Kalech, M., Provan, G.: Proceedings of the 24th International Workshop on Principles of Diagnosis (DX-2013) (Electronic proceedings) (2013), http://www.dx-2013.org/proceedings.php
Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic and stochastic search. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference (AAAI 1996), vol. 2, pp. 1194–1201 (1996)
Belov, J.A., Marques-Silva: MUSer2: An efficient MUS extractor, system description. Journal on Satisfiability, Boolean Modeling and Computation (2012)
Doyle, J.: A truth maintenance system. Artificial Intelligence 12(3), 231–272 (1979)
de Kleer, J.: An assumption-based TMS. Artificial Intelligence 28(2), 127–162 (1986)
Grégoire, É., Lagniez, J.-M., Mazure, B.: Questioning the importance of WCORE-like minimization steps in MUC-finding algorithms. In: Proceedings of the IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 923–930 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Grégoire, É. (2015). Any-Time Knowledge Revision and Inconsistency Handling. In: Bouabana-Tebibel, T., Rubin, S. (eds) Formalisms for Reuse and Systems Integration. FMI 2014. Advances in Intelligent Systems and Computing, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-319-16577-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-16577-6_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16576-9
Online ISBN: 978-3-319-16577-6
eBook Packages: EngineeringEngineering (R0)