Abstract
Optical systems are widely used in safety critical applications such as aerospace, telecommunication and biomedical systems. The verification of such systems is usually performed by informal techniques (e.g., numerical simulation and paper-and-pencil based proofs) which may result in erroneous designs. Interactive theorem proving has the potential to verify complex optical designs with better accuracy and soundness. However, existing formalizations of optics theories do not provide the facility to analyze optical imaging properties which are used to characterize the behavior of objects under observation (e.g., cancer cells, human eye or commercial camera lenses). In this paper, we present the formalization of cardinal points which are the most fundamental requirement to model imaging properties. We also present the formal verification of the cardinal points for an arbitrary optical system consisting of any number of optical components. In order to demonstrate the usefulness of our formalization, we present the formal analysis of an optical instrument used to compensate the ametropia of an eye.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The Hubble Space Telescope Optical System Failure Report. Technical report, NASA (1990)
Care of the Patient with Myopia: Optometric Clinical Practice Guideline. American Optometric Association (2010)
HOL Light (2014), http://www.cl.cam.ac.uk/~jrh13/hol-light/
Afshar, S.K., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O., Hasan, O., Tahar, S.: Formal Analysis of Optical Systems. Mathematics in Computer Science 8(1), 39–70 (2014)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., MacDonald, C., Mahajan, V., Van Stryland, E.: Handbook of Optics: Geometrical and Physical Optics, Polarized Light, Components and Instruments. McGraw-Hill Education (2009)
Cheng, Q., Cui, T.J., Zhang, C.: Waves in Planar Waveguide Containing Chiral Nihility Metamaterial. Optics and Communication 274, 317–321 (2007)
Griffiths, D.J.: Introduction to Quantum Mechanics. Pearson Prentice Hall (2005)
Hales, T.C.: Introduction to the Flyspeck Project. In: Mathematics, Algorithms, Proofs, Dagstuhl Seminar Proceedings, vol. 05021 (2005)
Harris, W.F.: Pascal’s ring, cardinal points, and refractive compensation. Vision Research 51(14), 1679 (2011)
Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)
Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)
Harrison, J.: The HOL Light Theory of Euclidean Space. Journal of Automated Reasoning 50(2), 173–190 (2013)
Hasan, O., Khan Afshar, S., Tahar, S.: Formal Analysis of Optical Waveguides in HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 228–243. Springer, Heidelberg (2009)
Hodgson, N., Weber, H.: Optical Resonators: Fundamentals, Advanced Concepts, Applications. Springer Series in Optical Sciences. Springer (2005)
Juhasz, T., Djotyan, G., Loesel, F.H., Kurtz, R.M., Horvath, C., Bille, J.F., Mourou, G.: Applications of Femtosecond Lasers in Corneal Surgery. Laser Physics 10(2), 495–500 (2011)
Yousri Mahmoud, M., Tahar, S.: On the Quantum Formalization of Coherent Light in HOL. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 128–142. Springer, Heidelberg (2014)
Naqvi, A.: Comments on Waves in Planar Waveguide Containing Chiral Nihility Metamaterial. Optics and Communication 284, 215–216 (2011)
Radiant-Zemax (2014), http://radiantzemax.com/
Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley (2007)
Siddique, U., Aravantinos, V., Tahar, S.: A New Approach for the Verification of Optical Systems. In: Optical System Alignment, Tolerancing, and Verification VII. SPIE, vol. 8844, p. 88440G–88440G–14 (2013)
Siddique, U., Aravantinos, V., Tahar, S.: Formal Stability Analysis of Optical Resonators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 368–382. Springer, Heidelberg (2013)
Siddique, U., Aravantinos, V., Tahar, S.: On the Formal Analysis of Geometrical Optics in HOL. In: Ida, T., Fleuriot, J. (eds.) ADG 2012. LNCS, vol. 7993, pp. 161–180. Springer, Heidelberg (2013)
Siddique, U., Tahar, S.: Formal Reasoning about Geometrical Optics, Hardware Verification Group, Concordia University, QC, Canada (2014), http://hvg.ece.concordia.ca/projects/optics/rayoptics.htm
Siddique, U., Tahar, S.: Towards Ray Optics Formalization of Optical Imaging Systems. In: Conference on Information Reuse and Integration, pp. 378–385. IEEE (2014)
Träger, F.: Handbook of Lasers and Optics. Springer (2007)
Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Practice and Experience. ACM Computing Survey 41(4), 1–19 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Siddique, U., Tahar, S. (2015). On the Formalization of Cardinal Points of Optical Systems. In: Bouabana-Tebibel, T., Rubin, S. (eds) Formalisms for Reuse and Systems Integration. FMI 2014. Advances in Intelligent Systems and Computing, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-319-16577-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-16577-6_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16576-9
Online ISBN: 978-3-319-16577-6
eBook Packages: EngineeringEngineering (R0)