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Efficient Multi-Robot Motion Planning for
Unlabeled Discs in Simple Polygons

Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey

Abstract—We consider the following motion-planning problem:
we are given m unit discs in a simple polygon with n vertices,
each at their own start position, and we want to move the discs
to a given set of m target positions. Contrary to the standard
(labeled) version of the problem, each disc is allowed to be moved
to any target position, as long as in the end every target position
is occupied. We show that this unlabeled version of the problem
can be solved in O

(
n logn+mn+m2

)
time, assuming that the

start and target positions are at least some minimal distance from
each other. This is in sharp contrast to the standard (labeled)
and more general multi-robot motion planning problem for discs
moving in a simple polygon, which is known to be strongly NP-
hard.

I. INTRODUCTION

The multi-robot motion-planning problem is to plan the
motions of several robots operating in a common workspace.
In its most basic form, the goal is to move each robot from
its start position to some designated target position, while
avoiding collision with obstacles in the environment and with
other robots. Besides its obvious relevance to robotics, the
problem has various other applications, for example in the
design of computer games or crowd simulation. Multi-robot
motion planning is a natural extension of the single-robot
motion planning problem, but it is much more complex due
to the high number of degrees of freedom that it entails, even
when the individual robots are as simple as discs.

A. Related work

One of the first occurrences of the multi-robot motion-
planning problem in the computational-geometry literature can
be found in the series of papers on the Piano Movers’ Problem
by Schwartz and Sharir. They first considered the problem in
a general setting [1] and then narrowed it down to the case
of disc robots moving amidst polygonal obstacles [2]. In the
latter work an algorithm was presented for the case of two
and three robots, with running time of O(n3) and O(n13),
respectively, where n is the complexity of the workspace.
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Later Yap [3] used the retraction method to develop a more
efficient algorithm, which runs in O(n2) and O(n3) time
for the case of two and three robots, respectively. Several
years afterwards, Sharir and Sifrony [4] presented a general
approach based on cell decomposition, which is capable of
dealing with various types of robot pairs and which has a
running time of O(n2). Moreover, several techniques that
reduce the effective number of degrees of freedom of the
problem have been proposed [5, 6].

When the number of robots is no longer a fixed con-
stant, the multi-robot motion-planning problem becomes hard.
Hopcroft et al. [7] showed that even in the relatively sim-
ple setting of n rectangular robots moving in a rectangular
workspace, the problem is already PSPACE-hard. Moreover,
Spirakis and Yap [8] showed that the problem is strongly NP-
hard for disc robots in a simple polygon.

In recent years, multi-robot planning has attracted a great
deal of attention from the robotics community. This can be
mainly attributed to two reasons. First, it is a problem of
practical importance. Second, the emergence of the sampling-
based techniques, which are relatively easy to implement, yet
are highly effective. These techniques attempt to capture the
connectivity of the configuration space through random sam-
pling [9, 10]. Although sampling-based algorithms are usually
incomplete—they are not guaranteed to find a solution—they
tend to be very efficient in practice. Hence, they are con-
sidered the method-of-choice for motion-planning problems
that involve many degrees of freedom. While sampling-based
tools for a single robot can be applied directly to the multi-
robot problem by considering the group of robots as one
large composite robot [11], there is a large body of work that
attempts to exploit the unique properties of the multi-robot
problem [12, 13, 14, 15, 16, 17].

The aforementioned results deal exclusively with the classi-
cal formulation of the multi-robot problem, where the robots
are distinct and every robot is assigned a specific target
position. The unlabeled variant of the problem, where all the
robots are assumed to be identical and thus interchangeable,
was first considered by Kloder and Hutchinson [18], who de-
vised a sampling-based algorithm for the problem. Recently a
generalization of the unlabeled problem—the k-color motion-
planning problem—has been proposed, in which there are sev-
eral groups of interchangeable robots [19]. Turpin et al. [20]
considered a special setting of the unlabeled problem with
disc robots, namely where the collection of free configurations
surrounding every start or target position is star-shaped. This
condition allows them to devise an efficient algorithm that
computes a solution in which the maximum path length
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is minimized. Unfortunately the star-shapedness condition is
quite restrictive, and in general it will not be satisfied.

Other related work includes papers that study the number
of moves required to move a set of discs between two
sets of positions in an unbounded workspace, when a move
consists of sliding a single disc—see for example the paper by
Bereg et al. [21] which provides upper and lower bounds for
the unlabeled case, or the paper by Dumitrescu and Jiang [22]
who show that deciding whether a collection of labeled or
unlabeled discs can be moved between two sets of positions
within k steps is NP-hard. Finally, we mention the problem
of pebble motions on graphs, which can be considered as a
discrete variant of the multi-robot motion planning problem.
In this problem, pebbles need to be moved from one set of
vertices of a graph to another, while following a certain set of
rules—see for example [23, 24, 25, 26, 27, 28].

B. Our contribution

Surprisingly, the unlabeled version of the multi-robot
motion-planning problem has hardly received any attention
in the computational-geometry literature. Indeed, we don’t
know of any papers that solve the problem in an exact and
complete manner, except in a restricted setting studied by
Turpin et al. [20] that we mentioned above. We therefore study
the following basic variant of the problem: given m unit discs
in a simple polygon with n vertices, each at their own start
position, and m target positions, find collision-free motions
for the discs such that at the end of the motions each disc
occupies a target position. We make the additional assumption
that the given start and target positions are well-separated.
More precisely, any two of the given start and target positions
should be at distance at least 4 from each other. Notice that
we only assume this extra separation between the robots in
their static initial and goal placements; we do not assume any
extra separation (beyond non-collision) between a robot and
the obstacles, nor do we enforce any extra separation between
the robots during the motion. Even this basic version of the
problem turns out to have a rich structure and poses several
difficulties and interesting questions.

By carefully examining the various properties of the prob-
lem we show how to transform it into a discrete pebble-
motion problem on graphs. A solution to the pebble prob-
lem, which can be generated with rather straightforward
techniques, can then be transformed back into a solution to
our continuous motion-planning problem. We mention that
a similar transformation was used in [19] in the context of
a sampling-based method. Using this transformation we are
able to devise an efficient algorithm whose running time is
O
(
n log n+mn+m2

)
, where m is the number of robots

and n is the complexity of the workspace. To be precise, we
show that our algorithm runs in O(n log n + m2) time, and
the overall description length of all the paths to be carried
out by the robots has complexity O(mn + m2). As already
mentioned, this is in sharp contrast to the standard (labeled)
and more general multi-robot motion planning problem for
discs moving in a simple polygon, which is known to be
strongly NP-hard [8].

II. PRELIMINARIES

We consider the problem of m indistinguishable unit-disc
robots moving in a simple polygonal workspaceW ⊂ R2 with
n edges. We define O 4= R2 \W to be the complement of the
workspace, and we call O the obstacle space. Since our robots
are discs, a placement of a robot is uniquely specified by the
location of its center. Hence, we will sometimes refer to points
x ∈ W as configurations, and we will say that a robot is at
configuration x when its center is placed at the point x ∈W .
For given x ∈ R2 and r ∈ R+, we define Dr(x) to be the
open disc of radius r centered at x.

We consider the unit-disc robots to be open sets. Thus a
robot avoids collision with the obstacle space if and only if
its center is at distance at least 1 from O, that is, when it is
at a configuration located in the free space F 4= {x ∈ R2 :
D1(x)∩O = ∅}. We require the robots to avoid collisions with
each other, so if a robot is at configuration x then no other
robot can be at a configuration y ∈ Int(D2(x)); here Int(X)
denotes the interior of the set X . Furthermore, the notation
∂(X) will be used to refer the boundary of X . We call D2(x)
the collision disc of the configuration x.

Besides the simple polygon W forming the workspace,
we are also given sets S = {s1, s2, ..., sm} and T =
{t1, t2, ..., tm}, such that S, T ⊂ F . These are respectively
the sets of start and target configurations of our m identical
disc robots. We assume that the configurations in S and T are
well-separated:

For any two distinct configurations x, y ∈ S ∪T
we have ‖x− y‖> 4.

The problem is now to plan a collision-free motion for our m
unit-disc robots such that each of them starts at a configuration
in S and ends at a configuration in T . Since the robots are
indistinguishable (or: unlabeled), it does not matter which
robot ends up at which target configuration. Formally, we
wish to find paths πi : [0, 1] → F , for 1 6 i 6 m,
such that πi(0) = si and

⋃m
i=1 πi(1) = T . Additionally, we

require that the robots do not collide with each other: for
every 1 6 i 6= j 6 m and every ξ ∈ (0, 1), we require
D1(πi(ξ)) ∩ D1(πj(ξ)) = ∅. Note that the requirement that
the robots do not collide with the obstacle space O is implied
by the paths πi being inside the free space F .

III. BASIC PROPERTIES OF THE FREE SPACE

Recall that the free space F ⊂ W is the set of configurations
at which a robot does not collide with the obstacle space.
The free space may consist of multiple connected components.
We denote these components by F1, . . . , Fq , where q is the
total number of components. For any i ∈ {1, 2, ..., q}, we let
Si

4= S ∩ Fi and Ti
4= T ∩ Fi. We assume from now on that

|Si|= |Ti| for all 1 6 i 6 q—if this is not the case, then the
problem instance obviously has no solution—and we define
mi

4= |Si|= |Ti| to be the number of robots in Fi.
Before we proceed, we need one more piece of notation.

For any x ∈ W , we define obs(x), the obstacle set of x, as
obs(x) 4= {y ∈ O : ‖x − y‖< 1}. In other words, obs(x)
contains the points in the obstacle space overlapping with
D1(x). Note that obs(x) = ∅ for x ∈ F .
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In the remainder of this section we prove several crucial
properties of the free space, which will allow us to transform
our problem to a discrete pebble problem. We start with some
properties of individual components Fi, and then consider the
interaction between robots in different components.

A. Properties of a single connected component of F
We start with a simple observation, for which we provide a

proof for completeness.

Lemma 1. Each component Fi is simply connected.

Proof: Suppose for a contradiction that Fi contains a hole.
Then Compl(F) 4= R2 \F , the complement of the free space,
has multiple connected components. One of these is CO,
the unbounded component containing O. Let C be another
component of Compl(F), and let x ∈ C. Since x 6∈ F , there
is a point y ∈ O with ‖x−y‖< 1. But then ‖x′−y‖< 1 for any
point x′ on the segment xy, which implies xy ⊂ Compl(F)
and thus contradicts that C and CO are different components.

Now consider any x in R2. Recall that D2(x) denotes the
collision disc of x, that is, D2(x) is the set of all configurations
y for which another robot placed at y collides with a robot at x.
We now define D∗(x) to be the part of D2(x) that is in the
same free-space component as x, that is, D∗(x) 4= D2(x)∩Fi
where Fi is the free-space component such that x ∈ Fi.

The following three lemmas constitute the theoretical basis
on which the correctness and efficiency of our algorithm relies.

Lemma 2. For any x ∈ F , the set D∗(x) is connected.

Proof: Assume for a contradiction that D∗(x) is not
connected. Let Fi be the free-space component containing x.
Since by definition x ∈ D∗(x), we can find some y ∈ D∗(x)
that is in a different connected component of D∗(x) from x.
Since y ∈ D∗(x) ⊂ D2(x), the distance between x and y is at
most 2. Hence, any point on the line segment xy is within a
distance of 1 of either x or y. Since x, y ∈ Fi, we know that
xy ⊂ W , otherwise either x or y would not be in F . We also
know that xy 6⊂ Fi, since otherwise x and y would not be in
different connected components of D∗(x). Because x, y ∈ Fi,
by definition there exists a simple path π ⊂ Fi from x to
y. Since the workspace is a polygon with finite description
complexity, we may assume that π has finite complexity as
well, which implies that π ∩ xy is composed of finitely many
isolated points and closed segments. See Figure 1 (a) for an
illustration.

We now define x′, y′ as the points on π∩xy ⊂ D∗(x) such
that x′, y′ are in different connected components of D∗(x) and
‖x′− y′‖ is minimized given the first condition. Let π′ be the
subpath of π joining x′ to y′. Notice that π ∩ x′y′ = {x′, y′}.
Indeed, if there exists a point z ∈ π ∩ Int(x′y′), then z must
be in a different connected component of D∗(x) than either
x′ or y′, and ‖x′ − y′‖ would not be the minimum. Since π
is a simple path, this means that λ 4= π′ ∪ x′y′ is a simple
closed curve. The area enclosed by λ (including λ) will be
referred to as A. We note that λ ⊂ W since π′ ⊂ F ⊂ W
and x′y′ ⊂ xy ⊂ W . This immediately implies that A ⊂ W ,
since W is a simple polygon.

Let A∗ 4= A\F . We claim that A∗ ⊂ Int(D2(x)), which
implies that there exists a path in Fi from x′ to y′ that
goes along ∂(A∗) and is fully contained in D2(x). But this
contradicts that x′ and y′ are in different components of D∗(x)
and, hence, proves the lemma. It thus remains to prove the
claim that A∗ ⊂ Int(D2(x)).

Note that for any point z ∈ A∗ and any w ∈ obs(z) we
have zw ∩ π′ = ∅, since π′ ⊂ F . Furthermore, for any v ∈
π′ we have ‖w − v‖> 1, and as x′, y′ ∈ π′ it follows that
‖w−x′‖> 1, ‖w−y′‖> 1. Assume without loss of generality
that x′y′ is vertical and that locally A lies to the right of x′y′,
as in Figure 1 (a). Let K be the circle of radius 1 that passes
through x′ and y′, and whose center lies to the left of x′y′—
such a circle always exists since ‖x′ − y′‖6 ‖x − y‖6 2.
(If ‖x′ − y′‖= 2 then the center of the circle lies on x′y′.)
Let ζ be the arc of this circle lying to the right of x′y′; note
that this is the shorter of the two arcs joining x′ and y′ if
they are of different lengths. Then A∗ is a contained entirely
within the area enclosed by ζ and x′y′. Furthermore, A∗ ⊂
Int(A) ∪ Int(x′y′) since π′ ⊂ F . Therefore, since x′y′ is a
subsegment of xy and ζ cannot cross ∂(D2(x)), it follows that

A∗ ⊂ (Int(A)∪ Int(x′y′))∩ Int(D2(x)) ⊂ Int(D2(x)),

which finishes the proof of the lemma.

B. Interference between different connected components of F .

Let Fi, Fj be two distinct components of F , and let x ∈ Fi
be such that D2(x) ∩ Fj 6= ∅. We then call x an interference
configuration from Fi to Fj , and define the interference set
from Fi to Fj as I(i,j)

4= {x ∈ Fi : D2(x) ∩ Fj 6= ∅}. We
also define the mutual interference set of Fi, Fj as I{i,j}

4=
I(i,j)∪I(j,i). Intuitively, an interference configuration from Fi
to Fj is a configuration for a robot in Fi which could block
a path in Fj , and the interference set is the set of all such
points. The mutual interference set of Fi, Fj is the set of all
single-robot configurations in either component which might
block a valid single-robot path in the other component.

Lemma 3. For any mutual interference set I{i,j} and any two
configurations x1, x2 ∈ I{i,j} we have D2(x1)∩D2(x2) 6= ∅.

Proof: The proof is similar in spirit to the proof of
Lemma 2 albeit slightly more involved. Assume for a con-
tradiction that x1, x2 ∈ I{i,j} and D2(x1) ∩ D2(x2) = ∅. By
definition there exist y1 ∈ D2(x1) and y2 ∈ D2(x2) such
that each pair {x1, y1}, {x2, y2} contains one point in Fi and
one point in Fj . As shown in the proof for Lemma 2, the
segments x1y1, x2y2 are entirely contained in W . We may
assume that x1y1 does not cross x2y2, since if it did the
crossing point would be in D2(x1) ∩ D2(x2) and we would
be done. Therefore, there exists a simple closed curve λ ⊂ W
composed of the union of two simple curves πi, πj and two
line segments `1, `2 such that πi ⊂ Fi and πj ⊂ Fj , and
`1 ⊂ x1y1, `2 ⊂ x2y2. Note that both `1 and `2 have one
endpoint in Fi and the other in Fj ; see Figure 1 (b) for an
illustration. The end points of `1 consist of x′1, y

′
1, such that

x1, x
′
1 and y1, y

′
1 belong to the same connected components,

and minimize the distance ‖x′1− y′1‖ (`2 is similarly defined).
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We refer to the region enclosed by λ (including λ) as A.
Because λ ⊂ W and W is a simple polygon, we know that
A ⊂ W . Furthermore, since πi, πj ⊂ F , for any x ∈ Int(A)
and y ∈ obs(x) (by definition, y ∈ R2\W so y 6∈ A; thus,
xy ∩ λ 6= ∅), we know that xy ∩ πi = xy ∩ πj = ∅. Thus,
xy∩ Int(`1) 6= ∅ or xy∩ Int(`2) 6= ∅, or both. Let A∗ 4= A\F
and denote by A∗1 the set of configurations x ∈ A∗ for which
there exists y ∈ obs(x) such that xy∩ Int(`1) 6= ∅; the set A∗2
is defined in a similar manner, only that now xy∩Int(`2) 6= ∅.
Note that A∗ = A∗1 ∪A∗2.

We claim that A∗1 ∩ A∗2 6= ∅. Indeed, if A∗1 ∩ A∗2 = ∅ then
there is a path from x1 to y1 along ∂(A∗1) that stays in A\A∗
and, hence, stays in F , which would contradict that x1 ∈ Fi
and y1 ∈ Fj for i 6= j. Thus, there exists a point x∗ ∈ A∗1∩A∗2.
We define the unit circles K1,K2 whose boundaries lie on the
endpoints of `1, `2 respectively, and whose centers are located

π′
y

y′

x

x′

A

ζ

K

A∗

D2(x)

(a)

x1

y1

x2

y2

x∗
`2`1

D2(x1) D2(x2)

A

K1 K2

πi

πj

(b)

Fig. 1. (a) An illustration of Lemma 2 . The disc D2(x) is drawn in green.
The closed curve λ, which consists of the curve π′ and the straight-line x′y′,
is drawn in blue, and A represents the area that is bounded by λ. The disc K
of radius 1 that touches x′, y′ is drawn in pink. Note that the area A∗, which
is drawn in red, is contained in A. The dashed black lines represent π\π′. (b)
An illustration of Lemma 3, and in particular, the case where A∗1 ∩A∗2 6= ∅.
For simplicity of presentation, we assume that `1 = x1y1 and `2 = x2y2.

outside A. Thus, we have A∗1 ⊂ K1 and A∗2 ⊂ K2. Hence,
x∗ ∈ K1 ∩ K2, which implies x∗ ∈ D2(x1) ∩ D2(x2), so
D2(x1)∩D2(x2) 6= ∅, contradicting our initial assumption.

The next lemma is a generalization of the previous one.
Intuitively, instead of considering a cycle of length 2 among
interacting free-space components, we now consider larger
cycles.

Lemma 4. Let {φ(1), φ(2), ..., φ(h)} ⊂ {1, 2, ..., q}, and let
x1, x2, ..., xh be points such that for all i, xi ∈ I{φ(i),φ(i+1)},
where φ(h+ 1) ≡ φ(1). (Thus the list is circular with respect
to its index). Then there exists some i 6= j such that D2(xi)∩
D2(xj) 6= ∅.

Proof: This can be proved in a manner completely
analogous to the proof of Lemma 3; we will outline the proof
here. We assume for a contradiction that D2(xi)∩D2(xj) = ∅
for all i 6= j. We can argue that we can construct a simple
closed curve λ ⊂ W passing through Fφ(1), Fφ(2), ..., Fφ(h)
(in that order), which is composed of simple closed curves
πi ⊂ Fφ(i) and line segments `i ⊂ W with endpoints in Fφ(i)
and Fφ(i+1). We then consider the area A enclosed by λ and
note that A ⊂ W . Let A∗ 4= A\F . If there exists some simple
curve π∗ ⊂ A∗ connecting `i to `j for some i 6= j, we can
show that there exists some k such that D2(xi)∩D2(xk) 6= ∅,
contradicting our assumption. Therefore no such π∗ exists for
any i 6= j. But this means that there exists some simple
path π′ ⊂ A ∩ F which joins πi and πj for some i 6= j,
which contradicts the fact that πi and πj belong to different
components of F .

IV. ALGORITHM FOR A SINGLE COMPONENT

In this section we consider a single component Fi of F .
We present an algorithm that solves the problem within Fi,
ignoring the possibility that robots in Fi might collide with
robots in other components Fj . In the next section we will
show how to avoid such collisions without changing the
motion plans within the individual components. As before we
set Si

4= S ∩ Fi and Ti
4= T ∩ Fi, and assume |Si|= |Ti|.

A. The motion graph

The motion graph Gi of Fi is a graph whose vertices repre-
sent start or target configurations, and whose edges represent
“adjacencies” between these configurations, as defined more
precisely below.

Recall that for any x ∈ Fi we defined D∗(x) 4= D2(x)∩Fi
as the part of the collision disc of x inside Fi, and re-
call from Lemma 2 that D∗(x) is connected. Moreover, for
any two distinct configurations x1, x2 ∈ Si ∪ Ti we have
D∗(x1) ∩ D∗(x2) = ∅, because D2(x1) ∩ D2(x2) = ∅ by
the assumption that the start and target positions are well-
separated. The vertices of our motion graph Gi correspond to
the start and target configurations in Si∪Ti. From now on, and
with a slight abuse of notation we will not distinguish between
configurations in Si∪Ti and their corresponding vertices in Gi.

Now consider F ∗i
4= Fi \

⋃
x∈Si∪Ti

D∗(x), the complement
of the collision discs of the given start and target configura-
tions in Fi. This complement consists of several connected
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components, which we denote by F 1
i , F

2
i , . . .. If the motion

graph Gi contains an edge (x1, x2) then there is a component
F `i that is adjacent to both D∗(x1) and D∗(x2). In other
words, two configurations x1 and x2 are connected in Gi
if there is a path from x1 to x2 that stays inside Fi and
does not cross the collision disc of any other configuration
x3 ∈ Si ∪ Ti. Figure 2 illustrates the definition of Gi. The
following observation summarizes the main property of the
motion graph.

Observation 1. Suppose all robots in Fi are located at a start
or target configuration in Si ∪ Ti, and let (x1, x2) be any edge
in Gi. Then a robot located at x1 can move to x2 without
colliding with any of the other robots.

Remark. We could also work with the dual graph of the
partitioning of Fi into cells induced by the collision discs. This
dual graph would, in addition to vertices representing start and
target configurations, also have vertices for the regionss F `i .
For the pebble-motion problem discussed below it is easier to
work with the graph as we defined it. This graph may have
many more edges, but in the implementation of our algorithm
described in Section VI we avoid computing it explicitly.

B. The unlabeled pebble-motion problem

Using the motion graph Gi we can view the motion-
planning problem within Fi as a pebble-motion problem. (A
similar approach was taken in [19], where a sampling-based
algorithm for multi-robot motion planning produces multiple
pebble problems by random sampling of the configuration
space.) To this end we represent a robot located at config-
uration x ∈ Si ∪ Ti by a pebble on the corresponding vertex
in Gi. The pebbles are indistinguishable, like the robots, and
they can move along the edges of the graph. At the start of the
pebble-motion problem for a graph with vertex set Si∪Ti, with
|Si|= |Ti|, there is a pebble on every vertex x ∈ Si. The goal
is to move the pebbles such that each pebble ends up in vertex
in Ti, under the following conditions: (1) no two pebbles may
occupy the same vertex at the same time, and (2) pebbles can
only halt at vertices, and (3) at most one pebble may move
(that is, be in transit along an edge) at any given time. We
call this problem the unlabeled pebble-motion problem. The
following lemma follows immediately from Observation 1.

F 3
s1

s3

s2

s4

t1

t2

t3

t4

F 2

F 1

(a)

G

s3

s2

t4

t1

s4

t2

t3

s1

(b)

Fig. 2. (a) A partition of a maximal connected component F . The start
and target positions consist of the elements S′ = {s1, s2, s3, s4}, T ′ =
{t1, t2, t3, t4}, respectively, where the areas D∗(s) for s ∈ S′ are drawn in
green and D∗(t) for t ∈ T ′ are drawn in purple. F ∗ consists of the parts
F 1, F 2, F 3. (b) A motion graph of F .

Lemma 5. Any solution to the unlabeled pebble-motion prob-
lem on Gi can be translated into a valid collision-free motion
plan for the robots in Fi.

Kornhauser [25, Section 3, first lemma] proved that the
unlabeled pebble-motion problem is, in fact, always solvable,
and he gave an algorithm to find a solution. Since he did
not analyze the running time of his algorithm, we sketch the
solution in the proof of the lemma below.

Lemma 6. [25] For any graph G with vertex set S∪T where
|S|= |T |, there exists a solution to the unlabeled pebble-
motion problem. Moreover, a solution can be found in O(|S|2)
time.

Proof: Let TG be a spanning tree of G. The algorithm
performs O(|S|) phases. In each phase, one or more pebbles
may be moved and one leaf will be removed from TG, possibly
with a pebble on it. After the phase ends, the algorithm
continues with the next phase on the modified tree TG, until all
pebbles have been removed and the problem has been solved.
A phase proceeds as follows.

If there are leaves v that are target vertices then we select
such a leaf v. If v does not yet contain a pebble, we find
a pebble closest to v in TG—this can be done by a simple
breadth-first search—and move it to v along the shortest path
in G. Note that the vertices on the shortest path cannot contain
other pebbles, since we took a closest pebble. We now remove
the leaf v, together with the pebble occupying it, and end the
phase. If all leaves in TG are start vertices, then let v be such
a leaf. If v is not occupied by a pebble it can be removed from
TG, and the phase ends. Otherwise a pebble resides in v, which
we move away, as follows. We find the closest unoccupied
vertex w to v of TG and move all pebbles on this shortest path
(including the pebble on v) one step closer to w, in order of
decreasing distance from w. After we evacuated v we remove
it from TG to end the phase.

The algorithm produces paths of total length O(|S|2), and
it can easily be implemented to run in O(|S|2) time. In some
cases Ω(|S|2) moves are required, e.g., when G is a single
path with all start positions in the first half of the path and all
target positions in the second half.

Lemma 7. Suppose we have an instance of our multi-robot
path planning problem where |Si|= |Ti| for every component
Fi of the free space F . Then for each Fi there exists a motion
plan Πi that brings the robots in Fi from Si to Ti, such that
they do not collide with the obstacle space nor with the other
robots in Fi.

V. COMBINING SINGLE-COMPONENT PLANS

We now consider possible interactions between robots con-
tained in different components Fi and Fj of F . As before,
we assume that |Si|= |Ti| for all i. We will show that there
exists a permutation σ : {1, 2, ..., `} → {1, 2, ..., `} such that
we can independently execute the single-component motion
plans for each component Fi as long as we do so in the order
Fσ(1), Fσ(2), ..., Fσ(`).

To obtain this order, we define a directed graph representing
the structure of F , which we call the directed-interference
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forest G = (V, E), where the nodes in V correspond to the
components Fi. We add the directed edge (Fi, Fj) to E if
either there exists a start position s ∈ S such that s ∈ I(i,j),
or there exists a target position t ∈ T such that t ∈ I(j,i). For
any i ∈ {1, 2, ..., `}, we additionally define N+(i) to be the
set of indices of the vertices in the out-neighborhood of vi;
similarly, N−(i) is defined as the set of indices of the vertices
in the in-neighborhood of vi.

Note that by Lemma 3 and since S, T are well separated,
we cannot have more than one start or target position in I{i,j}.
This implies that E cannot contain both (vi, vj) and (vj , vi).
Lemma 4 and the well-separatedness condition additionally
imply that G cannot have an undirected cycle. Thus, G is a
directed forest.

We now produce the desired ordering using G. Consider
Fi ∈ V , and suppose that for all j ∈ N+(i), every robot in Fj
is at a start position, and for all j ∈ N−(i), every robot in Fj
is at a target position. Additionally, suppose that for all j 6∈
N+(i)∪N−(i), every robot in Fj is at a start or target position.
Then, by the definition of G, no robot is at a configuration in
I{i,j} for any j 6= i; thus any motion plan for the robots in
Fi, such as the one described in Section IV, can be carried
out without being blocked by the robots not in Fi. Hence, if
we have an ordering σ : {1, 2, ..., `} → {1, 2, ..., `} such that
for all (directed) edges (vi, vj) ∈ E , σ−1(i) < σ−1(j), where
σ−1 is the inverse permutation of σ, then we can execute the
motion plans for the robots in Fσ(1), Fσ(2), ..., Fσ(`) in that
order. Since G is a directed forest such an ordering can be
produced using topological sorting on the vertices of G. Thus,
combining this result with Lemma 7 we obtain:

Theorem 8. Let there be a collection of m unlabeled unit-disc
robots in a simple polygonal workspace W ⊂ R2, with start
and target configurations S, T that are well-separated. Then
if for every maximal connected component Fi of F (where F
is the free space for a single unit-disc robot in W) |S ∩Fi|=
|T ∩ Fi|, there exists a collision-free motion plan for these
robots starting at S which terminates with every position of
T occupied by a robot.

VI. ALGORITHMIC DETAILS

In this section we fill in a few missing details in the de-
scription of our algorithm. Specifically, we present an efficient
method for generating motion graphs and describe a technique
for generating configuration-space paths that correspond to
edges in the motion graphs. We also consider the complexity
of the various subsets of F used throughout the algorithm.

A. Partitioning F
We analyze the combinatorial complexity of F∗ 4= F \⋃
x∈S∪T D

∗(x) and D 4=
⋃
x∈S∪T D

∗(x).

Lemma 9. The combinatorial complexity of F∗ is O(m+n).

Proof: We decompose the complement of the workspace
polygon into O(n) trapezoids—this is doable by standard
vertical decomposition. We define a set X , which consists of
the trapezoids, and in addition a collection of O(m) unit discs

that are centered at the start and target positions. We now
observe that the regions in X are pairwise interior disjoint
(and convex). Hence, it is known [29] that the complexity of
the union of the regions in X , each Minkowski-summed with
a unit disc, is linear in the number of regions plus the sum of
the complexities of the original regions. As the result of the
Minkowski sum operation of X with a unit disc is the the area
F∗, we conclude that that the complexity of F∗ is O(m+n).

Note that this upper bound still holds if we consider instead
of F∗ the union of F ∗i

4= Fi \
⋃
x∈Si∪Ti

D∗(x), for all 1 6
i 6 q.

Lemma 10. The combinatorial complexity of D 4=⋃
x∈S∪T D

∗(x), is O(m+ n).

Proof: Denote by d 4= {d1, d2, . . .} the segments that
define ∂(D). Additionally, denote by f 4= {f1, f2, . . .} and
f∗ 4= {f∗1 , f∗2 , . . .} the segments that define ∂(F), ∂(F∗),
respectively. Note that ∂(D) consists of segments that are ele-
ments of f, f∗ and in addition segments that are subsegments
of the elements of f , denoted by f ′ 4= {f ′1, f ′2, . . .}. Obviously
the complexity of the segments of d, that are elements of f or
f∗, is bounded by O(m+n). It might happen that the segments
of f will be split into many subsegments in f ′. However,
notice that whenever a segment of f is split the endpoints
of each subsegment consist of vertices of ∂(F) or ∂(F∗).
Moreover, exactly two segments in ∂(D) share an endpoint.
Thus, the complexity of D is O(m+ n).

B. Generating motion graphs

We consider a specific component F of F and construct
its motion graph G. Denote F ∗ 4= F \ ⋃x∈(S∪T )∩F D

∗(x).
Note that by the analysis in Section V we can ignore the
influence of D2(x) on connected components in F that do
not contain x. We assume that F ∗ breaks into k maximal
connected components F 1, . . . , F k. The construction of G,
along with the paths in F that correspond to the edges of G,
is carried out in two steps. First, for every F i we generate the
portion of G, denoted by Gi, whose vertices represent start
and target positions that touch the boundary of F i. Then, we
connect between the various parts of G.

We consider a specific connected component F i of F ∗

and describe how the respective portion of the motion graph,
namely Gi, is generated. We split the start and target positions
that share a boundary with F i into two subsets: Bi are those
positions for which the collision disc intersects the boundary
of F and Hi are those positions for which the collision disc
floats inside F . See Figure 3. We first handle positions in Bi.
Consider the outer boundary Γi of F i \ ⋃x∈S∪T D∗(x). We
argue that each x ∈ Bi can contribute exactly one piece to Γi.

Lemma 11. If x ∈ Bi then ∂(D2(x)) ∩ ∂(F i) consists of a
single component.

Proof: By contradiction, assume that the intersection con-
sists of two maximal connected components. Denote by y, y′

two configurations on the two components. As F i consists of a
single connected component of F there exists a path πyy′ ⊂ F
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from y to y′. Additionally, as y, y′, x belong to the same
connected component of F there exist two paths—πxy from x
to y and πxy′ from x to y′—that lie entirely in D∗(x). Thus,
the area that is bounded by the three paths πyy′ , πxy, πxy′

contains a patch of forbidden space, which contradicts the fact
the our workspace is a simple polygon.

For every x ∈ Bi we arbitrarily select a representative
point βi(x) ∈ ∂(D2(x)) ∩ F i. We order the points βi(x)
clockwise around Γi, and store them in a circular list Li.
We now incorporate the remaining start and target positions
Hi, namely those positions x for which D2(x) ∩ ∂(F ) = ∅.
Each position in Hi will be connected either to Γi or to the
boundary of a collision disc of another position in Hi as
follows. For each x ∈ Hi we shoot a vertical ray upwards
until it hits ∂(F i). Denote the point where the ray hits ∂(F i)
by c. If c ∈ ∂(D2(x′)) for some x′ ∈ Hi, x′ 6= x then an
edge between x and x′ is added to Gi. Otherwise, we let
βi(x) 4= c and insert it into the circular list Li representing
the points βi(x) along Γi collected so far. After all positions
in Hi have been handled in this manner, for each pair of
consecutive points βi(x′), βi(x′′) in Li (along Γi) we add an
edge in Gi between the vertices x′ and x′′. (Notice that some
of the positions x whose βi(x) appear in Li belong to Hi;
for example s3 in Figure 3.) Finally, the connection between
portions of the motion graph that represent different parts
of F ∗ is achieved through positions shared between two sets
Bi, Bj , for i 6= j.

C. Transforming graph edges into paths in the free space

There are three different types of transformations depending
on how the edge was created. Let (x, x′) be an edge in Gi.
Consider Figure 3 for an illustration. (i) If both x and x′ belong
to Hi (see (s4, s3) in the figure) then the path simply consists
of the two straight-line segments xc and cx′. For the remaining
two cases we note that if either vertex, say x, is in Bi, then
part of the path is a simple curve connecting x to βi(x) within
D∗(x) (see the red curves from s1 and t2 in the figure). We
denote this curve by δx. (ii) x, x′ ∈ Bi and the points βi(x)
and βi(x′) are consecutive along Γi (see (t1, t2) in the figure).
The path corresponding to the edge (x, x′) in this case is a
concatenation of three sub-paths: δx, the portion of Γi between
βi(x) and βi(x′) (not passing though the boundary of any
other collision disc), and δx′ . (iii) x ∈ Hi and x′ ∈ Bi (see
(s3, s2) in the figure). The path is again a concatenation of
three paths: the line segment xβi(x), the portion of Γi between
βi(x) and βi(x′) (not passing though the boundary of any
other collision disc), and δx′ .

Notice that for all path types above if a robot r moves
from x to x′, x′ is not occupied, and all other robots occupy
positions only at S ∪ T \ {x, x′}, r will not collide with any
other robot during the motion.

D. Complexity Analysis

We provide complexity analysis of our algorithm and
show that a solution to the problem can be produced within
O
(
(m+ n) log(m+ n) +mn+m2

)
operations, which can

be rewritten as O
(
n log n+mn+m2

)
.

β3(t2)

β3(s3)

s3

s2

s4

t1

t2

t4

F 3

β3(s1)

(a)

G3

s3

s2

t4

t1

s4

t2

(b)

Fig. 3. (a) An illustration of a component F 3 of F ∗ and the structures
used for generating the relevant portion of the motion graph. The boundary
positions of F 3 consist of B3 := {s2, t1, t2, t4}, while the hole positions
consist of H3 := {s3, s4}. For every x ∈ H3 its boundary representative
β3(x) is illustrated as a large black dot. A path between t1 and t2 is illustrated
in red. (b) The motion graph G3 induced by F 3.

Recall that the pebble problem solver (Section IV) operates
in O(m) phases, where in each phase a leaf node is removed
from the spanning tree of G. We show, using Lemma 9 and
Lemma 10, that each phase can be transformed into a set of
movements for the robots whose combinatorial complexity is
O(m+ n). The crucial observation is that in one phase each
edge of the motion graph is used at most once. Thus the set of
robot movements in one phase is bounded by the complexity
of the movements corresponding to all the edges in the graph
together. These comprise O(m) line segments, portions of the
boundaries Γi (whose complexity is O(m+n) by Lemma 9),
and the paths δx inside the D∗(x)′s (whose complexity is
O(m+n) by Lemma 10). A path of the latter type, δx, might
be traversed twice: once for reaching x and once for leaving
x. However asymptotically all the movements together have
complexity O(m+ n).

We note that the cost of generating F , along with its
partitions F∗ and D, is bounded by O ((m+ n) log(m+ n)),
due to [29]. We also note that deciding whether a solution
exists for a certain collection of start and target positions can
be carried out in O((m+n) log n) as follows. We first compute
F in O(n log n) time, and within the same time preprocess
it for efficient point location. Then we query the resulting
structure with the m points in S∪T , in O(log n) time each, and
verify that in every component Fi of F it holds that |Si|= |Ti|.
Thus, we have the following theorem.

Theorem 12. Let W be a simple polygon with n vertices and
let S = {s1, . . . , sm}, T = {t1, . . . , tm} be two sets of m
points in W . Additionally, assume that for every two distinct
element x, x′ of S ∪ T it holds that ‖x− x′‖> 4. Then, given
m unlabeled unit disc robots, our algorithm can determine
whether a path moving the m robots from S to T exists in
O ((m+ n) log n) time. If a path exists the algorithm finds it
in O

(
n log n+mn+m2

)
time.

VII. SEPARATION AND SOLVABILITY

Our results from the previous section imply that a separation
distance of 4 ensures that the problem always has a solution,
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assuming that each connected component contains the same
number of start and target positions. However, for smaller
separation values this does not have to be the case.

We define a magnitude λ to be the minimum separation
between start and target positions of unlabeled discs in a
simple polygon, that guarantees that a solution always exists
assuming that each connected component contains the same
number of start and target positions. Our work in the previous
sections shows that λ 6 4. The following proposition provides
a lower bound for the value of λ.

Proposition 13. λ > 4
√

2− 2(≈ 3.646).

Proof: We describe a concrete example where the value of
λ has to be greater than 4

√
2− 2 to guarantee solvability. See

Figure 4. The two robots r1, r2, placed at s1, s2, respectively,
need to leave through the corridor of width 2 located below
their initial positions in order to reach t1, t2. Denote the
separation between the start positions by 2 + ρ. We wish to
find the maximal value ρ for which the problem does not have
a solution.

It is clear that the two robots cannot enter the corridor
simultaneously. Therefore, if a solution exists there also exists
one where r2 stays put in s2 until r1 is well down the corridor.
We describe a path of r1 in which it maintains a maximal
distance from s2: first r1 has to slide along the edge AB,
when arriving at B it revolves around it and then slides down
along the other edge connected to B. This path has a circular
arc which is induced by the rotation about B (depicted by
the red arrow). The dashed red arc depicts the trace of the
boundary of r1 throughout this motion.

Denote by M the tangent point between r2 at s2 and the
edge CD. Note that the robots would collide when r1 is rotated
around B in case that ‖B−s2‖< 3. Thus, it must be that ‖B−
M‖> 2

√
2. As the segment AD consists of the subsegments

AB,BM,MD, it follows that

4 + ρ = ‖A−D‖
= ‖A−B‖+‖B −M‖+‖M −D‖
> 1 +

ρ

2
+ 2
√

2 + 1

= 2 + 2
√

2 +
ρ

2
,

and we conclude that ρ > 4
√

2 − 4, and also λ > ρ + 2 =
4
√

2− 2.

VIII. OPEN PROBLEMS AND FUTURE WORK

We have studied a basic variant of the multi-robot motion-
planning problem, where the goal is to find collision-free
motions that bring a given set of indistinguishable unit discs
in a simple polygon to a given set of target positions. Under
the condition that the start and target positions are separated
from each other by a distance of at least 4, we developed
an algorithm that solves the problem in time polynomial in
the complexity of the polygon as well as in the number of
discs: quadratic in the number of robots and near-linear in the
complexity of the polygon.

Our result should be contrasted with the labeled counterpart
of the problem, which is NP-hard [8]. In the NP-hardness

1 + ρ/2 1 + ρ/2

4 + ρ

2 + ρ

B

s2

M DA

2 s1

t1 t2

C

Fig. 4. It follows from our paper that when the start and goal positions
are well separated, then there is always a solution when each free-space
component has the same number of start and goal positions. However, it
is not true when the separation condition is not met. In the given example,
the two robots need to leave the through a corridor of width 2 located below
their initial positions. This is only possible when ρ > 4

√
2− 2, as otherwise

the robots will not be able to get to the corridor without colliding with each
other. See proof of Proposition 13 for more details.

proof the discs have different radii, however, and there is no
restriction on the separation of the start and target position.
Thus one of the main open questions resulting from our
study is to settle the complexity of the unlabeled problem
without this extra separation condition. Very recently, we have
made progress in this direction, by showing that the general
unlabeled problem is PSPACE-hard [30]. It should be noted that
this proof applies to a slightly different setting that consists of
unit-square robots translating amidst polygonal obstacles.

A natural question that arises is what happens when the
separation of start or target positions is equal to 2 + ρ, where
0 < ρ < 2? Would it be possible to design an algorithm, whose
running time is polynomial in m and n, and also depends in
some manner on ρ? We believe that the work by Alt et al. [31]
would be a good starting point for this line of work. Following
our discussion in Section VII, it will also be interesting to find
the exact threshold above which a problem is always solvable.
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