Skip to main content

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

This work describes STABLE SPARSE RRT (SST), an algorithm that (a) provably provides asymptotic (near-)optimality for kinodynamic planning without access to a steering function, (b) maintains only a sparse set of samples, (c) converges fast to high-quality paths and (d) achieves competitive running time to RRT, which provides only probabilistic completeness. SST addresses the limitation of RRT \(^*\), which requires a steering function for asymptotic optimality . This issue has motivated recent variations of RRT \(^*\), which either work for a limiting set of systems or exhibit increased computational cost. This paper provides formal arguments for the properties of the proposed algorithm. To the best of the authors’ knowledge, this is the first sparse data structure that provides such desirable guarantees for a wide set of systems under a reasonable set of assumptions. Simulations for a variety of benchmarks, including physically simulated ones, confirm the argued properties of the approach.

Yanbo Li is associated with Cerner Corporation.

Zakary Littlefield is supported by a NASA Space Technology Research Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high dimensions. In: IROS (2011)

    Google Scholar 

  2. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-based algorithms for optimal motion planning. In: ICRA (2013)

    Google Scholar 

  3. Bullet Physics Engine. http://bulletphysics.org

  4. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion. The MIT Press (2005)

    Google Scholar 

  5. Denny, J., Morales, M.M., Rodriguez, S., Amato, N.M.: Adapting RRT growth for heterogeneous environments. In: IROS, Tokyo, Japan (2013)

    Google Scholar 

  6. Dobson, A., Bekris, K.: Sparse roadmap spanners for asymptotically near-optimal motion planning (2013)

    Google Scholar 

  7. Gayle, R., Segars, W., Lin, M.C., Manocha, D.: Path planning for deformable robots in complex environments. In: Robotics: Science and Systems (2005)

    Google Scholar 

  8. Goretkin, G., Perez, A., Platt, R., Konidaris, G.: Optimal sampling-based planning for linear-quadratic kinodynamic systems. In: ICRA (2013)

    Google Scholar 

  9. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. IJRR 21(3), 233–255 (2002)

    Google Scholar 

  10. Islam, F., Nasir, J., Malik, U., Ayaz, Y., Hasan, O.: RRT*-Smart: rapid convergence implementation of RRT* towards optimal solution. In: ICMA (2012)

    Google Scholar 

  11. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE TRO 26(4), 635–646 (2010)

    Google Scholar 

  12. Jeon, J.H., Cowlagi, R., Peters, S., Karaman, S., Frazzoli, E., Tsiotras, P., Iagnemma, K.: Optimal motion planning with the half-car dynamical model for autonomous high-speed driving. In: ACC (2013)

    Google Scholar 

  13. Jeon, J.H., Karaman, S., Frazzoli, E.: Anytime Computation of time-optimal off-road vehicle maneuvers using the RRT\(*\). In: CDC (2011)

    Google Scholar 

  14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. IJRR 30(7), 846–894 (2011)

    Google Scholar 

  15. LaValle, S.M., Branicky, M.S.: On the relationship between classical grid search and probabilistic roadmaps. In: WAFR. Nice, France (2002)

    Google Scholar 

  16. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. IJRR 20(5), 378–400 (2001)

    Google Scholar 

  17. Li, Y., Littlefield, Z., Bekris, K.: Asymptotically optimal sampling-based kinodynamic planning ((submitted: 10 July 2014)). http://arxiv.org/abs/1407.2896

  18. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: NIPS (2004)

    Google Scholar 

  19. Littlefield, Z., Li, Y., Bekris, K.: Efficient sampling-based motion planning with asymptotic near-optimality guarantees with dynamics. In: IROS (2013)

    Google Scholar 

  20. Marble, J.D., Bekris, K.: Asymptotically near-optimal planning with probabilistic roadmap spanners (2013)

    Google Scholar 

  21. Matérn, B.: Spatial Variation 2nd edn. vol. 36 of Lecture Notes in Statistics, vol. 36. Springer, New York (1986)

    Google Scholar 

  22. Nechushtan, O., Raveh, B., Halperin, D.: Sampling-diagrams automata: a tool for analyzing path quality in tree planners. In: WAFR (2010)

    Google Scholar 

  23. Papadopoulos, G., Kurniawati, H., Patrikalakis, N.M.: Asymptotically optimal inspection planning using systems with differential constraints. In: ICRA (2013)

    Google Scholar 

  24. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a synergistic combination of layers of planning. IEEE TRO 26(3), 469–482 (2010)

    Google Scholar 

  25. Rickert, M., Brock, O., Knoll, A.: Balancing exploration and exploitation in motion planning. In: ICRA (2008)

    Google Scholar 

  26. Rodriguez, S., Tang, X., Lien, J.M., Amato, N.M.: An obstacle-based rapidly-exploring random tree. In: ICRA (2005)

    Google Scholar 

  27. Salzman, O., Halperin, D.: Asymptotically near-optimal RRT for fast, high-quality, motion planning. Techenical Report, Tel Aviv University (2013)

    Google Scholar 

  28. Shaharabani, D., Salzman, O., Agarwal, P., Halperin, D.: Sparsification of motion-planning roadmaps by edge contraction. In: ICRA (2013)

    Google Scholar 

  29. Shkolnik, A., Walter, M., Tedrake, R.: Reachability-guided sampling for planning under differential constraints. In: ICRA (2009)

    Google Scholar 

  30. Urmson, C., Simmons, R.: Approaches for heuristically biasing RRT growth. In: IROS, pp. 1178–1183 (2003)

    Google Scholar 

  31. Wang, W., Balkcom, D., Chakrabarti, A.: A fast streaming spanner algorithm for incrementally constructing sparse roadmaps. In: IROS (2013)

    Google Scholar 

  32. Webb, D., van Den Berg, J.: Kinodynamic RRT*: asymptotically optimal motion planning for robots with linear differential constraints. In: ICRA (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas E. Bekris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Littlefield, Z., Bekris, K.E. (2015). Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics