Skip to main content

The Feasible Transition Graph: Encoding Topology and Manipulation Constraints for Multirobot Push-Planning

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

Planning for multirobot manipulation in dense clutter becomes particularly challenging as the motion of the manipulated object causes the connectivity of the robots’ free space to change. This paper introduces a data structure, the Feasible Transition Graph (FTG), and algorithms that solve such complex motion planning problems. We define an equivalence relation over object configurations based on the robots’ free space connectivity. Within an equivalence class, the homogeneous multirobot motion planning problem is straightforward, which allows us to decouple the problems of composing feasible object motions and planning paths for individual robots. The FTG captures transitions among the equivalence classes and encodes constraints that must be satisfied for the robots to manipulate the object. From this data structure, we readily derive a complete planner to coordinate such motion. Finally, we show how to construct the FTG in some sample environments and discuss future adaptations to general environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y.U., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions. Auton. robots 4(1), 7–27 (1997)

    Google Scholar 

  2. Doty, K.L., Van Aken, R.E.: Swarm robot materials handling paradigm for a manufacturing workcell. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 778–782 (1993)

    Google Scholar 

  3. Hashimoto, M., Oba, F., Eguchi, T.: Dynamic control approach for motion coordination of multiple wheeled mobile robots transporting a single object. In: Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems’93, IROS’93, vol. 3, pp. 1944–1951 (1993)

    Google Scholar 

  4. Rus, D.: Coordinated manipulation of objects in a plane. Algorithmica 19(1–2), 129–147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Simmons, R., Singh, S., Hershberger, D., Ramos, J., Smith, T.: Coordination of heterogeneous robots for large-scale assembly, In: Proceedings of the International Symposium on Experimental Robotics (ISER), Hawaii (2000)

    Google Scholar 

  6. van den Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path planning among movable obstacles: A probabilistically complete approach. In: Algorithmic Foundations of Robotics VIII (2008)

    Google Scholar 

  7. Koga, Y., Latombe, J.-C.: On multi-arm manipulation planning. In: Proceedings of IEEE International Conference on Robotics and Automation (1994)

    Google Scholar 

  8. Gayle, R., Moss, W., Lin, M.C., Manocha, D.: Multi-robot coordination using generalized social potential fields, In: Proceedings of the IEEE International Conference on Robotics and Automation (2009). ISBN 978-1-4244-2788-8

    Google Scholar 

  9. van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple agents in crowded environments. In: Proceedings of the 2008 Symposium on Interactive 3D graphics and games, 2008. ISBN 978-1-59593-983-8. http://doi.acm.org/10.1145/1342250.1342272

  10. Stilman, M., Kuffner, J.J.: Navigation among movable obstacles: real-time reasoning in complex environments. Int. J. Hum. Robot. 2(04), 479–503 (2005)

    Article  Google Scholar 

  11. Lynch, K.M., Mason, M.T.: Controllability of pushing. In: Proceedings of the IEEE International Conference on Robotics and Automation (1995)

    Google Scholar 

  12. Mason, M.T.: Mechanics of Robotic Manipulation. MIT press, Cambridge (2001)

    Google Scholar 

  13. de Berg, M., Gerrits D.H.P.: Computing push plans for disk-shaped robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  14. Sudsang, A., Rothganger, F., Ponce, J.: Motion planning for disc-shaped robots pushing a polygonal object in the plane. In: Proceedings of the IEEE International Conference on Robotics and Automation (2002)

    Google Scholar 

  15. Fink, J., Ani Hsieh, M., Kumar, V.: Multi-robot manipulation via caging in environments with obstacles. In: IEEE International Conference on Robotics and Automation (2008)

    Google Scholar 

  16. Pereira, G.A.S., Kumar, V., Campos, M.F.M.: Decentralized algorithms for multirobot manipulation via caging. Int. J. Robot. Res. 23(7–8), 783–795 (2004)

    Google Scholar 

  17. Song, P., Kumar, V.: A potential field based approach to multi-robot manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (2002)

    Google Scholar 

  18. La Valle, S.M.: Planning Algorithms. Cambridge Press, Cambridge (2006)

    Google Scholar 

  19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  20. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  21. Hauser, K., Latombe, J.-C.: Multi-modal motion planning in non-expansive spaces. Int. J. Robot. Res. 29(7), 897–915 (2010)

    Article  Google Scholar 

  22. Siméon, T., Laumond, J.-P., Cortés, J., Sahbani, A.: Manipulation planning with probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 729–746 (2004)

    Article  Google Scholar 

  23. Sung, C., Ayanian, N., Rus, D.: Improving the performance of multi-robot systems by task switching. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2999–3006 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors thank Geoffrey Gordon for his incisive comments on early drafts of this work. Laura Lindzey was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Lindzey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lindzey, L., Knepper, R.A., Choset, H., Srinivasa, S.S. (2015). The Feasible Transition Graph: Encoding Topology and Manipulation Constraints for Multirobot Push-Planning. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics