Abstract
Planning for multirobot manipulation in dense clutter becomes particularly challenging as the motion of the manipulated object causes the connectivity of the robots’ free space to change. This paper introduces a data structure, the Feasible Transition Graph (FTG), and algorithms that solve such complex motion planning problems. We define an equivalence relation over object configurations based on the robots’ free space connectivity. Within an equivalence class, the homogeneous multirobot motion planning problem is straightforward, which allows us to decouple the problems of composing feasible object motions and planning paths for individual robots. The FTG captures transitions among the equivalence classes and encodes constraints that must be satisfied for the robots to manipulate the object. From this data structure, we readily derive a complete planner to coordinate such motion. Finally, we show how to construct the FTG in some sample environments and discuss future adaptations to general environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, Y.U., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions. Auton. robots 4(1), 7–27 (1997)
Doty, K.L., Van Aken, R.E.: Swarm robot materials handling paradigm for a manufacturing workcell. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 778–782 (1993)
Hashimoto, M., Oba, F., Eguchi, T.: Dynamic control approach for motion coordination of multiple wheeled mobile robots transporting a single object. In: Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems’93, IROS’93, vol. 3, pp. 1944–1951 (1993)
Rus, D.: Coordinated manipulation of objects in a plane. Algorithmica 19(1–2), 129–147 (1997)
Simmons, R., Singh, S., Hershberger, D., Ramos, J., Smith, T.: Coordination of heterogeneous robots for large-scale assembly, In: Proceedings of the International Symposium on Experimental Robotics (ISER), Hawaii (2000)
van den Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path planning among movable obstacles: A probabilistically complete approach. In: Algorithmic Foundations of Robotics VIII (2008)
Koga, Y., Latombe, J.-C.: On multi-arm manipulation planning. In: Proceedings of IEEE International Conference on Robotics and Automation (1994)
Gayle, R., Moss, W., Lin, M.C., Manocha, D.: Multi-robot coordination using generalized social potential fields, In: Proceedings of the IEEE International Conference on Robotics and Automation (2009). ISBN 978-1-4244-2788-8
van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple agents in crowded environments. In: Proceedings of the 2008 Symposium on Interactive 3D graphics and games, 2008. ISBN 978-1-59593-983-8. http://doi.acm.org/10.1145/1342250.1342272
Stilman, M., Kuffner, J.J.: Navigation among movable obstacles: real-time reasoning in complex environments. Int. J. Hum. Robot. 2(04), 479–503 (2005)
Lynch, K.M., Mason, M.T.: Controllability of pushing. In: Proceedings of the IEEE International Conference on Robotics and Automation (1995)
Mason, M.T.: Mechanics of Robotic Manipulation. MIT press, Cambridge (2001)
de Berg, M., Gerrits D.H.P.: Computing push plans for disk-shaped robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (2010)
Sudsang, A., Rothganger, F., Ponce, J.: Motion planning for disc-shaped robots pushing a polygonal object in the plane. In: Proceedings of the IEEE International Conference on Robotics and Automation (2002)
Fink, J., Ani Hsieh, M., Kumar, V.: Multi-robot manipulation via caging in environments with obstacles. In: IEEE International Conference on Robotics and Automation (2008)
Pereira, G.A.S., Kumar, V., Campos, M.F.M.: Decentralized algorithms for multirobot manipulation via caging. Int. J. Robot. Res. 23(7–8), 783–795 (2004)
Song, P., Kumar, V.: A potential field based approach to multi-robot manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (2002)
La Valle, S.M.: Planning Algorithms. Cambridge Press, Cambridge (2006)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)
Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)
Hauser, K., Latombe, J.-C.: Multi-modal motion planning in non-expansive spaces. Int. J. Robot. Res. 29(7), 897–915 (2010)
Siméon, T., Laumond, J.-P., Cortés, J., Sahbani, A.: Manipulation planning with probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 729–746 (2004)
Sung, C., Ayanian, N., Rus, D.: Improving the performance of multi-robot systems by task switching. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2999–3006 (2013)
Acknowledgments
The authors thank Geoffrey Gordon for his incisive comments on early drafts of this work. Laura Lindzey was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Lindzey, L., Knepper, R.A., Choset, H., Srinivasa, S.S. (2015). The Feasible Transition Graph: Encoding Topology and Manipulation Constraints for Multirobot Push-Planning. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-16595-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16594-3
Online ISBN: 978-3-319-16595-0
eBook Packages: EngineeringEngineering (R0)