Skip to main content

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion

  • Chapter
  • First Online:
  • 3426 Accesses

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

Collision prediction is a fundamental operation for planning motion in dynamic environment. Existing methods usually exploit complex behavior models or use dynamic constraints in collision prediction. However, these methods all assume simple geometry, such as disc, which significantly limit their applicability. This paper proposes a new approach that advances collision prediction beyond disc robots and handles arbitrary polygons and articulated objects. Our new tool predicts collision by assuming that obstacles are adversarial. Comparing to an online motion planner that replans periodically at fixed time interval and planner that approximates obstacle with discs, our experimental results provide strong evidences that the new method significantly reduces the number of replans while maintaining higher success rate of finding a valid path. Our geometric-based collision prediction method provides a tool to handle highly complex shapes and provides a complimentary approach to those methods that consider behavior and dynamic constraints of objects with simple shapes.

This work is supported in part by NSF IIS-096053, CNS-1205260, EFRI-1240459, AFOSR FA9550-12-1-0238.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jaillet, L., Simeon, T.: A prm-based motion planner for dynamically changing environments. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1606–1611 (2004)

    Google Scholar 

  2. Kallman, M., Mataric, M.: Motion planning using dynamic roadmaps. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, 2004, ICRA’04, vol. 5, pp. 4399–4404 (2004)

    Google Scholar 

  3. Li, T.Y., Shie, Y.C.: An incremental learning approach to motion planning with roadmap management. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3411–3416 (2002)

    Google Scholar 

  4. Ferguson, D., Kalra, N., Stentz, A.: Replanning with RRTs. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 1243–1248 (2006)

    Google Scholar 

  5. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  6. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic a*: an anytime, replanning algorithm (2005)

    Google Scholar 

  7. van den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2366–2371 (2006)

    Google Scholar 

  8. van den Berg, J., Overmars, M.: Planning the shortest safe path amidst unpredictably moving obstacles. In: Proceedings of the International Workshop on Algorithmic Foundations of Robotics (WAFR) (2006)

    Google Scholar 

  9. Wzorek, M., Kvarnstrom, J., Doherty, P.: Choosing path replanning strategies for unmanned aircraft systemsun (2010)

    Google Scholar 

  10. Hayward, V., Aubry, S., Foisy, A., Ghallab, Y.: Efficient collision prediction among many moving objects. Int. J. Robot. Res. 14(2), 129–143 (1995)

    Article  Google Scholar 

  11. Hubbard, P.M.: Collision detection for interactive graphics applications. Ph.D. thesis (1995)

    Google Scholar 

  12. Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans. Syst., Man Cybern. Part A: Syst. Hum. 28(5), 562–574 (1998)

    Article  Google Scholar 

  13. Kim, H.K., Guibas, L.J., Shin, S.Y.: Efficient collision detection among moving spheres with unknown trajectories. Algorithmica (2005)

    Google Scholar 

  14. Ziebart, B.D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J.A., Hebert, M., Dey, A.K., Srinivasa, S.: Planning-based prediction for pedestrians. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 3931–3936 (2009)

    Google Scholar 

  15. Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded environments. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 981–986 (2010)

    Google Scholar 

  16. Wu, A., How, J.P.: Guaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstacles. Auton. Robot. 227–242 (2012)

    Google Scholar 

  17. Fraichard, T., Asama, H.: Inevitable collision states. a step towards safer robots? In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS 2003), vol. 1, pp. 388–393 (2003)

    Google Scholar 

  18. Shiller, Z., Gal, O., Raz, A.: Adaptive time horizon for on-line avoidance in dynamic environments. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3539–3544 (2011)

    Google Scholar 

  19. Martinez-Gomez, L., Fraichard, T.: Collision avoidance in dynamic environments: an ics-based solution and its comparative evaluation. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pp. 100–105 (2009)

    Google Scholar 

  20. Bautin, A., Martinez-Gomez, L., Fraichard, T.: Inevitable collision states: a probabilistic perspective. In: Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, pp. 4022–4027 (2010)

    Google Scholar 

  21. Cohen, J., Lin, M.C., Manocha, D., Ponamgi, M.: I-collide: An interactive and exact collision detection system for large-scale environment. In: Symposium on Interactive 3D Graphics, pp. 189–196 (1995)

    Google Scholar 

  22. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. Comput. Graph. 30, 171–180 (1996)

    Google Scholar 

  23. Baraff, D.: Curved surfaces and coherence for non-penetrating rigid body simulation. Comput. Graph. 24(4), 19–28 (1990)

    Article  Google Scholar 

  24. Hahn, J.K.: Realistic animation of rigid bodies. Comput. Graph. 22(4), 299–308 (1988)

    Article  Google Scholar 

  25. Lu, Y.: Path planning in similar environments. Ph.d. thesis, George Mason University, Fairfax (2013)

    Google Scholar 

  26. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Iowa State University, Technical report (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Ming Lien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lu, Y., Xi, Z., Lien, JM. (2015). Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics