Abstract
This paper addresses a team of cooperating vehicles performing autonomous deliveries in urban environments. The cooperating team comprises two vehicles with complementary capabilities, a truck restricted to travel along a street network, and a quadrotor micro-aerial vehicle of capacity one that can be deployed from the truck to perform deliveries. The problem is formulated as an optimal path planning problem on a graph and the goal is to find the shortest cooperative route enabling the quadrotor to deliver items at all requested locations. The problem is shown to be NP-hard using a reduction from the Travelling Salesman Problem and an algorithmic solution is proposed using a graph transformation to the Generalized Travelling Salesman Problem, which can be solved using existing methods. Simulation results compare the performance of the presented algorithms and demonstrate examples of delivery route computations over real urban street maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garone, E., Naldi, R., Casavola, A., Frazzoli, E.: Cooperative path planning for a class of carrier-vehicle systems. In: IEEE Conference on Decision and Control, pp. 2456–2462 (2008)
Parker, L.: Current state of the art in distributed autonomous mobile robotics. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems, vol. 4, pp. 3–12. Springer, Japan (2000)
Pimenta, L., Kumar, V., Mesquita, R., Pereira, G.: Sensing and coverage for a network of heterogeneous robots. In: IEEE Conference on Decision and Control, pp. 1–8 (2008)
Chand, P., Carnegie, D.A.: Mapping and exploration in a hierarchical heterogeneous multi-robot system using limited capability robots. Robot. Auton. Syst. 61(6), 565–579 (2013)
Mathew, N., Smith, S.L., Waslander, S.L.: A graph-based approach to multi-robot rendezvous for recharging in persistent tasks. In: International Conference on Robotics and Automation, May 2013, pp. 3497–3502
Phan, C., Liu, H.: A cooperative UAV/UGV platform for wildfire detection and fighting. In: International Conference on System Simulation and Scientific Computing, pp. 494–498 (2008)
Bae, J., Rathinam, S.: An approximation algorithm for a heterogeneous traveling salesman problem. In: ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, pp. 637–644 (2011)
Oberlin, P., Rathinam, S., Darbha, S.: A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem. In: American Control Conference, pp. 1292–1297 (2009)
Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem. INFOR 31(1), 39–44 (1993)
Helsgaun, K.: General k-opt submoves for the Linkernighan TSP heuristic. Math. Program. Comput. 1, 119–163 (2009)
Nagy, G., Salhi, S.: Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. Eur. J. Oper. Res. 162(1), 126–141 (2005)
Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.: Dynamic vehicle routing for robotic systems. Proc. IEEE 99(9), 1482–1504 (2011)
Qu, Y., Bard, J.F.: The heterogeneous pickup and delivery problem with configurable vehicle capacity. Transp. Res. Part C 32, 1–20 (2013)
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algorithmics and Combinatorics, vol. 21, 4th edn. Springer, New York (2007)
Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Mathew, N., Smith, S.L., Waslander, S.L. (2015). Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-16595-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16594-3
Online ISBN: 978-3-319-16595-0
eBook Packages: EngineeringEngineering (R0)