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The Lion and Man Game on Convex Terrains

Abstract— We study the well-known lion-and-man game in two consecutive frontiers in order to make progress. In this
which a lion (the pursuer) tries to capture a man (the evader) paper, we formalize this idea and analyze its correctness.
The players have equal speeds and they can observe each pq paper is organized as follows. In Section Il we

other at all times. While the game is well-studied in two . o
dimensional domains such as polygons, very little is known present the preliminary definitions we use throughout the

about its properties in higher dimensions. In this paper, we Paper. Section Ill presents the general idea of the capture
study the lion and man game on the surface of convex terrains. strategy. In Section IV we discuss the properties of convex

We show that the lion can capture the man in a finite number terrains that are crucial for our strategy. Details of thespar
of steps which is a function of the terrain geometry. strategy in different configurations is presented in Sectip
Section VI and Section VII.
. INTRODUCTION
[1. DEFINITIONS

Many robotics applications such as tracking and search | this section, we present concepts and definitions that
can be modeled as pursuit-evasion games. In this papgjiil be useful throughout the paper. The game will take
we study a fundamental pursuit-evasion game known as thgyce on a terrain whose lowest point is on the 0 plane.
lion-and-man game. In the original version of this game, Fhroughout the paper, we refer to this plane astheeX Y -
lion tries to capture a man in a circular arena. The player@ane We occasionally refer to this plane as th& -plane.
have equal speeds. Various variants of the lion-and-mafioreover, we use the coordinate fradi&” Z with its origin
game have been studied to model robotics applications. Aflaced on any arbitrary point in the ba&& -plane. Fig. 7(a)
overview of these results can be found in the survey Pap@epicts our coordinate frame convention.
by Chung et al. [1]. Briefly, assuming that the players move e are now ready to formalize the definition of a terrain.
in turns, and they can observe each other at all times, thepefinition 1: A terrain is a polyhedral surface in three-
lion wins the game in the circular arena [2], [3] and ingimensional space. It is represented as a finite set of esrtic
simply-connected polygons [4]. Three lions are sufficienta j, the base plane, together with a unique height value
sometimes necessary in polygons with obstacles [5]. associated with each vertex [8]. The vertices are triarigdla

The lion-and-man game has been studied in higher dime@hich implies that the faces of the terrain are triangleRin
sions as well. However, our understanding of the propertiag this paper, without loss of generality, we assume that all
of the game in higher dimensions is far from completeterrain vertices are at different heights. However, ouatetyy
Kopparty and Ravishankar showed thatRd, d + 1 lions can be applied to those cases as well.
can capture the man if and only if the man starts inside their Definition 2: A convex terrain is a terrain such that every
convex hull [6]. Alexander et al. [7] study pursuit in morepoint on its surface is also a point on the boundary of the
general environments. They showed that if the environmegbnvex hull of the vertices of the terrain. In other words, a
has non-positive curvature (i.e. it is CAIj, by greedily convex terrain does not have any valleys.
moving toward the evader, the pursuer can eventually captur Definition 3 (The Perpendicular Image)For a pointp =
it. The CAT(0) condition is not necessary for capture. ThiS(%y,Z) on the terrain, the poing = (z,%) is called the
is noted in [7] where they show that on a hemisphergerpendicularimage gf onto the bas&'Y -plane. Similarly,
H C §* C R® defined asH = {(z,y,2) : 2> +y* + 2> = one can define the image of a path on the surface of the
1,z > 0}, the pursuer wins. The hemisphere is not GAT( terrain onto the bas& Y-plane.

In this paper, we further our understanding of the lionwe will reserve the ternprojection for an important ingre-
and-man game in higher dimensions. We study the game dient of our strategy.
terrains and show that the lion wins the game on any convexWe denote the pursuer and the evadeffbgnd £ respec-
terrain. tively. We assume that the game is played on the surface of

A terrain is characterized by unique height values foa convex terrain excluding th& Y -plane at the base. Let us
points in the two-dimensional plane. Our pursuit strategy odenote this surface b¥j. We also denote the perimeter of the
convex terrains is based on guardingntiersgiven by set of boundary ofT" by |T'|. We use the following game model.
points on the terrain that are on the same height. The pursuire players move in turns. Each turn takes a unit time step.
starts from the highest frontier and pushes the frontidn each turn, the players can move along any arbitrary path of
downwards while preventing the evader from entering anigngth less than or equal to one (the step-size). The pursuer
previously guarded frontier. Intuitively, the perimetdrtbe and also the evader both have full-visibility: they can alse
frontier is increased in this downward sweep. This allowshe location of the other player. The pursuer captures the
the pursuer to use the difference between the perimeter @fader if at any time, which includes the whole time interval



in one step associated with one turn, the distance between
them becomes less than or equal to one (the step-size). The
justification for this capture condition is that if we assuae
radius around the players, the pursuer captures the eviader i
they collide.

Definition 4: Let p; andp, be two distinct points on the
same facef of T'. Consider the straight line segment that
connects them off’, and denote its length bg. Also, let! edg@r
be the length of its perpendicular image (Definition 3) onto :
the XY -plane. We refer to the ratia = % as the length @ ' )
coefficient associated with, and ps.

For a specific facef, the minimum value of the length rig. 1. (a) The partitioning of the exterior &' into wedge regions and
coefficient is the cosine of the angle betwegnand the edge regions. (b) The projection &fonto the wavefrontV.

XY-plane. This is because faces with vertical edges are
not allowed, and also the two pointg andp, are distinct.
Therefore, we have the following proposition. nition 3 is different than the projection onto a wavefront in

Proposition 1: The length coefficients are less than ofe€finition 7. The image of a point € 7' is denoted by’
equal tol i.e. o < 1. Also, the minimum length coefficient While its projection ontdV' is referred asr(p, W).
is well defined in the sense that it is a finite positive number.
We refer to the minimum possible length coefficientBras
Qnin - The idea of our pursuit strategy is the following. We first

Definition 5 (Wavefronts)We refer to the set of points on discretize the surface df by a set of wavefronts as shown
T which are on the same heightis thewavefrontat 2. Note  in Fig. 7(a). Initially, the pursuer goes to the highest poin
that sinceT is a convex polyhedron, the wavefront at heighof 7. (For now, let us assume that this point is unique.
z is also a convex polygon contained in the plaie= z. In Appendix, we address the case where this assumption
Moreover, the image of a wavefront has the same shape @ges not hold.) The highest point is the first wavefront to
the wavefront itself. be guarded bypP. Starting from this first wavefront, the

Definition 6 (Wedge Regions and Edge Regiohs}t images of the wavefronts in th€Y -plane grow in perimeter
W* be the perpendicular image of a wavefrd#it onto the as shown in Fig. 6. The pursuer then locates itself “close”
XY-plane. Suppose that the vertices1d¥ are labeled as to the projection of the evader onto the current wavefront.
{w1,ws, ..., w,} in the clockwise order. See Fig. 1(a) for anShortly, we will specify what we mean by close. We will
illustration. We partition the region outsid&” (in the base show that by staying close to the projection of the evades ont
XY-plane) into regions of two types: theige regionsand the wavefrontlV/, the pursuer can prevent the evader from
the wedge regionsFor an edgew;w; 1, its corresponding crossingl¥’ and re-contaminating the region enclosediisy
edge region is the region in between the two perpendiculaithout being captured. After finite number of steps, the
lines to the segmeniv;w;,; which pass throughy; and pursuer makes progress towards the next wavefront. While
w;11 respectively. For a vertew; € W', its corresponding the pursuer is guarding the current wavefront, and also when
wedge region is the region in between the two perpendiculédr makes progress to the next wavefront, it maintains the

fc/’é;%)/vedg%i-region

IIl. THE CAPTURE STRATEGY

lines tow; yw; andw;w;+1 which pass through;. invariant that it is stillcloseto the projection of the evader.
Definition 7 (Projection onto a Wavefrontl:et £ and Definition 8: We refer to the wavefront that the pursuer

W be the perpendicular images 6fand a wavefront¥/  is currently guarding as thieontier wavefront.

onto the XY-plane respectively. Also, suppose thét is Throughout the paper, we denote the frontier wavefront by

outside the region enclosed By¢. The projection of & W and the wavefront next to it bj#,,. The pursuer’s goal
onto the wavefrontV is defined as follows. See Fig. 1(a).is to make progress toV/,,.
Consider the partitioning of the exterior region @f into Definition 9: Let p1,p2 € W be two points on the
wedge regions and edge regions. There will be two case&vefront V. We denote the shorter path from to ps
based on the location of’ (Fig. 1(a)): 1) £ is inside along W by W(p1,p2), and its length bydy (p1, p2). We
the edge region associated with an edgev;  ;; 2) £ is  also denote the length of the segmghi in the XY -plane
inside the wedge region of a vertex. In the first case, let by dxy (p}, pb).
7¢(£) denote the intersection of the edgew;,; and the Our proposed pursuit strategy for guarding a wavefront
perpendicular line to the edge;w; ; passing througl€’. and making progress towards the next wavefront is inspired
In the second case:(€) refers to the vertexy;. Then, the from the following pursuer strategy in the two-dimensional
projection of € onto W is the point onI’ that its image on plane which we call theook move To illustrate the idea, for
the base plane is*(£) (Fig. 1(b)). We denote this point on now, suppose that the game is played on Xg-plane. Let
T as7(E,W). We will omit W in (£, W) whenW can [ be a line lying on this plane that the pursuer is trying to
be inferred from the context. guard. See Fig. 2. Suppose that the evader is at the point
Remark 1:Notice that the perpendicular image in Defi-and letw(e) be the projection of the evader ontoSuppose



that the pursuer is at the poipton [ such thatiw(e) — p| =

d < 1. It is not difficult to see that the evader cannot cross
[ without being captured as long @< h whereh is the
length of the segment betweerand (e)! (Fig. 2(a)). The
pursuer can make progress by pushifgrward if the evader
moves to the left: the pursuer moves along thaxis for d

by going top’ such that|p’ — p = d|. In other words, it
pushes thdrontier line [ to the new linel’ which is closer

to the evader. See Fig. 2(b). We generalize the rook move
idea to the surface of a convex terrain as follows.

Fig. 3. Image ofP, £ and W onto the XY -plane. If dy (P, 7(£)) <

, , dxy (%, m(E)), the evader cannot cro$¥ without being captured.
e i
-\ .

that we havedy (P, 7(€)) < dxy (1, 74(&)) < a < ar.

4 T Here, the first inequality is our assumption and the second
H one is because’(€) is the closest point t&*. Therefore,
m(e) 1 the length ofll is less than the length of the evader’s path
(b) from £ to £ which is one. Thus, the pursuer captures the
evader by moving toP’. [ |

Fig. 2. The illustration of the rook move in th€Y -plane. (a) If the evader . .
crossed, the pursuer moves to the crossing pajnfThe distance between Lemma 2 (Cond|t'on oy ('P, 77(5))) On the convex

q ande’ is less than one. Thug, will be captured. (b) If the evader moves terrain T, if dw (P,n(£)) < <=z, then the condition
to the left, the pursuer can pusgtorward. dw(P, 71-(5)) < de(Ei, ﬂ.i(g)) will be satisfied.
o _ i ) Proof: See Fig. 4(b) which shows the imageslof, P
Definition 10 (The Guarding Configurationjsuppose and¢& in the XY-plane. First, consider the segmé®tc’ in
that the evader is outside the region enclosed By {he hase plane. We use the following proposition:

_(|.e. pot|rr11ts that ?re t?/l'?h% th"’?‘g)’ e}tﬂd that_ th? pursﬁuer Proposition 2: The pre-image of any continuous path in
is on the wavefrontl¥. Consider the projection o the XY-plane is a continuous path if.

onto W, w(£), and the two paths oV from P to ) i i . _

m(€). The pursuer is in guarding configuration 6# if SinceT' is convex,P*E* is the image 3f ia valid path_ on

dw (P, 7(E)) < dxy(E,7(E)). See Fig. 1(b) for an T from P t_o £. Denote the Ien.gth 07_3 E" by a and its
corresponding path offf by ar. Sincef is not captured yet

example. i :
Remark 2: Throughout the paper, for the ease of notation’ € havel < ar. ThUS,cumin < a. We will use this property

we used = dw (P, (£)). in our proof.
Lemma 1:Suppose that the pursuer is on the wavefidnt

such thatdy, (P, 7 (€)) < dxy (', 7*(E)). Then, the evader p (&) W
cannot cros$V without being captured. See Definition 9 for ——0 ——
dw and dxy.

e ¢

Proof: Suppose that the evader cros$&sby moving E
to £’. Fig. 3 depicts the images ¥, P and& on theXY- :
plane. Letg be the crossing point. Consider the evader’s path X
onT from £ to ¢. Let ar anda denote the length of this :

path and its image respectively. s 1
Now, there will be two casesdw (P,q) < a Or a <
dw (P,q). If dw(P,q) < a, the pursuer moves tg along a
W. Since the length of the evader path frgnto £’ is less (@) (b)

than1, the pursuer will capture the evader. Cof © Th e ol -
; ; ’ Fig. 4. Proof of Lemma 2. Left) The images of the players anel t
Otherwise, the pursuer moves alom to the pointP” € wavefront is considered iXY -plane. Right) TheXY -plane is shown

W such thatPP’ = a. We show that there exists a path onwith the images.
T from P’ to & that its length is less thah. Therefore,
the pursuer captures the evader according to our captur
condition by moving toP’.

Consider the patfil from P’ to &’ which is composed of
W(P’,q) followed by the evader path from to £’. Note

®For ease of notation, let = dxy (4,74 (€)) andd =
dw (P, m(£)). Moreover, letm = dxy (P?, 7*(£)). Finally,
denote the angle between the two segmefits’(£) and
Pirt(€) by 4. It can be easily verified that sincd/’*

1we will shortly present the proof of this claim for our gerleation of IS convex, we have% < % (Flg' 5)' Thus, Cy < 0.
the rook move onX'Y -plane toT. Consequentlyp < —c¢,, < 1.



Theorem 1 (Capture on Convex Terrain§uppose that
the lion and man game is played on the surface of a

m < d = —2mhcy < —2dhcy,

convex terrainT. The proposed Plfrsuit strategy, guaran-
T

a2 < a* < d* + h? - 2dhey = tees captures in at mo:ﬂ)(%.l_d_D) steps. Here|T|
0 < d* + h? — 2dhey, — a2, = denotes the perimeter @f, Dy is the diagonal off". Also
0<h2+2hd+d®— a2 D = maxd(W,W,,) is the designed distance between two

min

consecutive wavefronts, andl = dyw (P, 7(E,W)) is the

0 < (b= (=d = amin))(h = (=d+ min)) distance that the pursuer maintains from the projection of

Since0 < h, we must havey,,;, — d < h. Sinced <
@min (according to our assumption), we conclude tiat
Qmin—d < h. Thusd < h and the condition in Definition 10

£ onto W (also a design parameter of the strategy).

IV. PROPERTIES OF THEWAVEFRONTS

is satisfied. u We first study the discrete events as the frontier wave-
gt ; front is moved downwards. We show that the combinatorial
(] & changes to the frontier occur at verticesiofvhich we refer

Fig. 5. SincelV is convex, we havel < .

Lemma 3:0Once the pursuer establishes the guarding con-
figuration on the wavefront¥/, it can maintain the config-
uration as the evader moves. In other words, if the pursuer
establishesly (P, w(£)) < dxy (€%, 7*(£)), it can maintain
this condition as£ is moving on7'.

The guarding configuration allows the pursuer to prevent
the evader from crossing the frontier wavefront. We now
present the pursuer’s strategy that is based on the evader’s
motion. Without loss of generality, we assume that iniiall _.

Fig. 6.

to them as thevertex eventsConsider the wavefrorid” at
heightz and letF'(z) denote the set of faces tHat intersects
with them. We interchangeably use the notatib(iV) to
denote this set. Also, suppose thatv;, is an edge iV
which lies onf € F(z). We refer tow,;w;+1 as the edge
associated wittthe facef.

Disappearing vertex|event|

edges|associatied with

{r: same face

The image of the wavefronts is shown. Edges assdciaith

the pursuer locates itself to the left of£, 1W). We then use  the same face are parallel. As the wavefront reaches arteresiex, some
the clockwise direction, as the base direction that theymirs edges disappear. Afterwards, new edges appear.

uses for making progress.

If the evader does not move in its current turn, or if it Lemma 4 (Properties of the Wavefronts):1) Suppose

changes its direction and moves backward, we show that the
pursuer’s distance fromr (€, W,,) is less thanl. Thus, the
pursuer can move tdV,, while it is on 7(€,W,,) in only
one step. On the other hand, if the evader moves in the same
direction, we show that the pursuer can make progress to
W, after at mosO(N) steps whereV is finite and we will
specify it later in Section VII. In summary, the events that 2)
the pursuer makes progress are the following: 1) the evader
does not move in its current turn, 2) the evader moves in
the counter clock-wise direction in its current turn, 3) the
evader moves in the clock-wise direction for the nextV)
steps. In all of these events, we show that the pursuer can
move ontow (€, W,,). Afterwards, the evader cannot cross
W, without being captured. Therefore, the evader is being
squeezed betwedlr,, and the boundary df’, and it will be
captured in finite number of steps.

Observation 1:0bserve that after moving ta (€, W,,),
the pursuer needs only one extra turn to locate itself in the
guarding configuration i.e. at distanddrom = (&€, W,,).

Wy and W5 are two wavefronts at heightsand z + ¢
respectively such thaf'(z) = F(z+¢€) = F. Let f be

a face inF', and letw; ws andwjw), be the two edges

on Wy and W5 respectively that are oli. Then, their
perpendicular images are parallel to each other. See
Fig. 7 for an illustration.

Let v be a vertex ofl" which is at heightz, and let

W be the wavefront at. Also, suppose thdt/; is the
wavefront atz — e¢; such that forz —¢; < h < z we
have F'(z — ¢1) = F(h) = L. Similarly, suppose that
W5 is the wavefront at + e5 such that forz < h <

z + €2 we haveF(z + e2) = F(h) = U. Next, denote

the two faces adjacent to in W by f; and f,. Let

L' ¢ L—{f1, f=} be faces adjacent tothat are below

v. Similarly, defineU’. Then, as the frontier wavefront
moves fromz + €5 to z, the edges associated with
disappear. On the other hand, as the frontier moves
from z to z — ¢; new edges associated wifli appear.

In the rest of the paper, we refer to these events as the



vertex eventsthe former one aslisappearing events the two perpendicular lines ta! andm? respectively.
and the latter one aappearing eventsSee Fig. 7. Finally, let m. and m?2 be the lines parallel ton!
andm? drawn fromw,,. The wavefront vertexo,, can
be inside the wedge region af or outside it. In the
following, without loss of generality, we assume that

&' is to the left of the linew!w?,.

a) w, is inside the wedge region af: In this case,
sinceWW andW,, are convex polygons;(E, W,,)
will be inside the region formed by I’, m! and
m?2 (The shaded region in Fig. 8). It is not diffi-
cult to show that the distance betwee(€, W,,)
and w is less thanw'w!. Since w'w! < D,
the pursuer can move te and then move to
(&€, Wh).

Fig. 7. The pursuer starts fromy. There are two vertex events: at ; : ; . Qi
andvs. The image of edges associated with the same face are parglle b) wy is outside the Wedge r?glpn .tﬁf. SlmllarIY’
wjwh|[wiwy. Note the appearing edge gfy below vz which is shown we can show thatr(£,,) is inside the region
in dots (left), and also the disappearing edgefarabovevs (left). formed byl;, m! andww,. The rest of the proof

is similar to the previous case.
Definition 11 (Distance Between Two Wavefronts):

The distance between two consecutive wavefrofits A
and W,,, denoted byd(W,W,), is defined as follows. o .
First, suppose that there is not vertex event betw8én NS e

and W,,. Consider the vertex wavefront® < W and

w, € W, such that the segmentw, € T. In other

words, ww,, is part of an edge ofl’ (Fig. 7). Then

d/(VV, Wn) = dxy(W, Wn) = maxdxy(wi,wfl) where the ml
maximum is taken over all such segmenis,,. Finally,

let us consider the case that there is a vertex wavefront
betweenW andW,,. In this case, we assume tHat’ is the ;
wavefront if there were no vertex event. We then consider my P
the distance betweeW and W, asd(W,W,,). See Fig. 7 Wi

for an. I|.|leStl’atI0n. . - . Fig. 8. The evader does not move in its turn. The case &has in the
Definition 12 (Discretization of" by the Wavefronts): wedge region ofw. We show thatr(€, W,,) is inside the shaded region.

The wavefronts are chosen such that the maximum distangecew’w? < D, the pursuer can move to(E, Wy,).
between any two consecutive wavefrontsiis In fact, D _
quantifies the progress that the pursuer achieves by moving2) £° is in the edge region of an edge: This case is

i
wp

from W to W,,. Later as we present the strategy, we also illustrated in Fig. 9. Letn,, € W,, be the edge iV,
present the conditions that we need for (Eq. 1, Eq. 2, which is parallel tom € W. There will be two case:
Eqg. 3). 1) n(E,W,) € mp, 2) 7(E,W,) & m,. The former
case is straightforward: the pursuer simply moves to
V. THE EVADER STAYS STILL INITS TURN 7(€,W) and then it moves tar(€,W,) along the

In this section, we consider the case that the evader perpendicular line (Fig. 9). In the latter case, it can be
remains still in its turn. The pursuer uses this extra turn in shown7?(£,W,,) is inside the region formed by the
order to make progress towards the next wavefront. The key  perpendicular line ten, m,, and the segment between
idea is thatd(W, W,,) is small enough such that the pursuer (&, W) andw!,. Sincew'w! < D, the pursuer can
can move to the projection & onto W,,. move tow (€, W,,) in only one step.

Lemma 5 (When There is No Vertex-Ever@pnsider m
the case that did not move in its move. Suppose that |emma 6 (Appearing Vertex Evengonsider the case
there is no vertex event in betweéi and IW,,. Then, the that £ did not move in its move. Suppose that there is a

pursuer can locate itself on(&, ;) in one step. disappearing vertex event in the transition fréfh to 1W,,.
Proof: There will be two cases based on whether thehen, the pursuer can locate itself o6, W,,) in one step.
evader is in a wedge region or an edge region. Proof:
1) &% is in the wedge region of a vertex: Let w, be Let w be the corresponding wavefront vertex ifi. In

the vertex inW,, which is associated with the samethe following, we consider the bas€Y -plane. See Fig. 10
faces as the faces adjacent 4o Also, let m' and for an illustration. Letm! and m? be the images of the
m? be the images of the two wavefront edges that arevo wavefront edges that are adjacentuto Also, let m}
adjacent tow (Fig. 8). Moreover, letl and !’ denote andm? be the lines parallel ten' andm? in W,,. Let w}



VI. THE EVADER MOVES COUNTER CLOCK-WISE

®
‘ ; We now consider the case the evader is moving in counter
’_F'WL’ wa clock-wise direction in its current turn. Let, be the new
T location the evader (Fig. 11). From convexityldf, one can
> m show thatdy (P, w(E,, W) < (1—dw (P, 7(E,W)) = (1—
pi w d). Also, we designed/(W,W,,) such that for all point®

we haved(rw(p, Wy,), m(p, W)) < D. Therefore, if we design

Fig. 9. The evader does not move in its turn. The case &4ds in the ¢ and D such that:
edge region ofm. Left) 7(£, Wy) € my. Right) 7(E, W,,) & my,. We
show thatr (£, Wy,) is in the shaded region. 1-d+D<1=D<d (2)

the pursuer can first move ta(&,,, W) alongW and then it

andw? be the vertices iV, that are adjacent tex}, and ~can move tor (&, Wy).
m?2 respectively. Finally, lef; andl, be the two lines that
are perpendicular ton! and m? drawn fromw) and w?
respectively.

Now, £¢ can be inside the region formed lby and /> or
outside it. If it is outside, we can use the result of Lemma 5.
Therefore, suppose that’ is inside the region formed

by I; andly. Let hy, hy denote the length ofviw). and
w'w? respectively. Moreover, let; denote the length of the
segment between’ and the intersection of.} andm?. We
show that the pursuer can movedoand then fromw it can
move tox (&, W,,). Without loss of generality, assume that Fig. 11. The evader moves counter clockwise.
hy = max{hy, ha, h3}. Refer to Fig. 10 for angles, v
ands. Also, letz be the distance betweer(w., W) and
w. Then,z = hmti% Therefore, the pursuer’s distance to

VII. THE EVADER MOVES IN CLOCK-WISE DIRECTION
FORO(N) STEPS

We now consider the case that the evader is moving in

(€, W,) is at mostr + h,, +d = hmtf& + hy, +d. Since
P2
. . . Bs . . .
hm < D, this distance is less tha(1 + 71“)+d. We can  the clock-wise direction for the nexd(N) = O(—L-)

. 2 1—d—D
deS|.gnd = dw (P, x(&,W)) and D = max d(W, Wy) such  gteps. First, we can assume that during thege—L1)
that: Bs it is always moving in its turn because if it stays still,
D(1+ t—d’l)+d§ 1. (1) then the pursuer can use the strategy in Section V for
v2 making progress. Also, if in one of these turns, the evader
Consequently, the pursuer can move @0 and then to moves counter clock-wise the pursuer can use the strategy in
m(E,W,) in one step. B Section VI for going towardV,,. We first present the case

that there is no vertex event in betweBn and WW,,.

We show that if the evader moves in the same clock-wise
direction forO(ljng) steps, its projection ontd)” will
circumnavigate aroundl for a complete round. In other
words, 7(£, W) will come back to the same point o’
after O( 17|delD) steps. We will use this observation to show
that if 7(£,W) completes such round, the players will be
eventually in a configuration that allows the pursuer to move
towardw (€, W,,). We refer to this configuration as théde-
turn configuration.

Lemma 8:Consider the nexd( 17|delD) time steps where
|T| denotes the perimeter of the bounddryThen, we will
have at least one of the following events in théx Jde'D)

Fig. 10. The case that the evader is not moving and there agagpp steps: 1) for at least O,ne Wi do,es not rr_10ve, or 2) it
vertex event. moves counter clock-wise, or 3) circumnavigates around
W ie. 7(£,W) comes back to the same point G .

Lemma 7 (Disappearing Vertex Eventlonsider the Proof: Suppose that we don’t have none of the the first
case that did not move in its move. Suppose that there isnd the second events. We show that for sure we will have
an appearing vertex event in the transition fréthto W,,.  the third event. Since the first and the second event does
Then, the pursuer can locate itself (€, 17,,) in one step. not occur, the evader is moving clock-wise. l&tand &,

Proof: The proof is similar to Lemma 6. B denote the location of the evader before and after a turn.




For simplicity let us use the notatiors = dy (£,&,) and Next, let us consider the pursuer's move Wg,. The

d = dw (P,n(E,W)). Obviously, we havé < d. < 1. Con- pursuer moves tg; such that its image moves along the
sider the path fronP to = (&,, W,,) which is composed of segmentwq’. Let cr denote the length of this path df,

W (P,n(E,,W)) and then the shortest path froni&,,, W) andc denote the length of its image i.eq’. Sincec = acr

to m(€,, W,). The length of this path i, = d+d. + D. and amin < a < 1 we havec < c¢p < s Since
Now, if d, < 1, the pursuer can move to(&,, W,) and . < Ozmm(sinﬂ\/m — d) (Definition 12), we have
make progress. Therefore, for contradiction, suppose that < sin By/a2,,— d2 — d. Thus, the pursuer can move to
1 <d, = d+d.+ D. Consequentlyl —d — D < de. 4 along the aforementioned path.

In other words, after each step, the evader’s projection ont
W moves for at leasl — d — D. Therefore, after at most

l_lg_lD steps,t(€, W) comes back to the same point Bn. & .\” &
Here,|T'| denotes the perimeter af. [ | < Wnrgt

Now that we knowr (€, W) circumnavigates arount/, Wi w!
we show that the pursuer will be in a good configuration L//ﬁ?\;\ "
for making progress: the wide-turn configuration. The wide- Wi W

turn configuration is the following. Fig. 12(a) shows an @ )
illustration of this configuration. Suppose thatis a vertex

of W. Let ww’ be the image of the edge adjacentutoin Fig. 12. Left) The wide-turn configuration. Right) The pradfLemma 10.

W, and f be the face thabw’ € f. Letw,w/, be the image

of the edge associated with the same fgcen 1W,,. Note u
thatww’ andw,w!, are parallel to each other. Suppose that Lemma 10 (When There is No Vertex-Ever@jippose

the perpendicular tavw’ which passes fromw intersects that the pursuer is currently guarding, and letiV,, be the
with w,w!, inside the edgev,w’,. Let ¢ be the point of next wavefront such that there is no vertex event in between
intersection. The players will be in wide-turn configuratio W and W,,. Then, if during the nexO(1_|dT_|D) steps, the

if the evader crosses the wedge region of such verteln ~ evader always moves and it does not change its direction,
the following lemma, we prove that in this configuration the¢he players will be in the wide-turn configuration. Thus, the
pursuer can make progress towafd,. pursuer can make wide-turn progress.

Lemma 9: Suppose that the evader and the pursuer are Proof: We show that the wide-turn configuration will
in the wide-turn configuration. Then, the length of the patigventually arise by contradiction. In particular, since th
W (P, w) followed by the segmentyq is less than or equal to evader is circumnavigating aroun, it crosses the wedge
the length of the path that the evader travels when it crosseggions of all vertices ofV’. We show that it is impossible
the wedge region ofv. that none of these events is a wide-turn configuration.

Proof: Suppose that the evader crosses the wedge Suppose that the evader is crossing the wedge region of
region ofw by mo\/ing fromé&; to &,. Consider the segment For this Configuration to not be a wide-turn Configuratione, th
in between the images @ and &, in the baseXY-plane. Vvertexw, must lie outside the wedge region ofas shown
SinceT is convex, this segment is the image of a valid pati Fig. 12(b). Let us denote the angle betweens andww’
onT. Let us denote the length of this path @hfrom P to by . Also, lety be the angle betweenw, and the second
&1 by ar. Also, leta be the length of the image of this path.edge adjacent ta,, on W,,. Observe thaty < ¢.

Since& is not captured af;, then it must be that < a;. Let hy be the distance between the two edges’ and
Therefore a,nin < a. wpw!,. Note that these two edges are parallel. Similarly, let

Next, leth be the length of the segment betweghand h1 be the distance between the other two parallel edges that
w'. Notice thatP is in the guarding configuration. Thus, are adjacent tav andw,, respectively.
the distance betweeR? and w’ is d. Therefore, using the ~ Observe that since < ¢» we haveh; < hy. We will use
Pythagorean theorem, we hawd, < a2 = d?+ b2. Thus, this property to conclude our contradiction.

VaZ, —d%<b. Let us denote the vertices d by {wq,wa, -, wy,}.

Let [ denote the length of the path betweghand &i.  Also, leth; be the distance between the edgelbnand the
Also, let us denote the angle of the wedge region &ty 3.  €dge oni¥, that are associated with the same face. Since the
Then,sin 81/a2,, — d? < bsin 8 < I. Therefore, the path evader is circumnavigating arouridfl, it crosses the wedge
that the evader travels ofi from & to & is longer than regions of allw;’s. If none of these events are wide-turn

sin 8,/a2,, — d2. Therefore, as long as: configuration, then we must ha\h:-_; < hy < e < hm <
h1. In other words); < hy; which is a contradiction. m

Qmin SIn 3 Lemma 11 (Appearing Vertex Even§uppose that there
d< 2 3) . : . -
/1 + sin B2 is an appearing vertex event in the transition frdmto WW,,.
Then, if during the nexO(ljng) steps, the evader always
we would haved < sinj\/a2,, — d?. Consequently, moves and it does not change its direction, the pursuer can
the pursuer can move tav, and use the remaining make progress by moving to(&, W,,). Proof: Letw
sin 8y/a?2,,,, — d? — d for moving to W,,. be the corresponding vertex &¥ (Fig. 13). Also, letn! and




m? be the two edges ifi’? that are adjacent tw. Moreover, are parallel tom) and m?2. Let w' and w? be the two
let m. andm? be the edges iV, that are parallel ton'  vertices that are adjacent te' and m? (Fig. 14). Notice
andm? respectively. Also, letv. andw? be the two vertices that as the evader crosses the wedge region2ofwe have
in W, that are adjacent to»}, andm?2. Letl; andl, be the a wide-turn configuration. Therefore, Lemma 9 applies and
perpendicular lines tan! andm? drawn fromw?. thus the pursuer can make progress towad@s ]
Since w(£,W)? circumnavigates aroundlV, the evader
will cross the wedge region o). Now, there will be two
cases. First, the edge?2 intersectsl, (Fig. 13(a)). In this We studied the lion and man game on convex terrains and
case, we have a wide-turn configuration and the proof followgresented a pursuit strategy which guarantees that thagurs
from Lemma 9. can reduce the distance between the players to the step size
Second, the edge:2 does not interseck, (Fig. 13(b)). in finite time. The capture time is a function of the terrain’s
In this case, consider the auxiliary wavefroit, that is Properties such as its height and maximum slope as well as
obtained fromW,, as follows: W,, (w’,w?) is replaced by the perimeter of its projection onto the base plane.
the m’ and m2 as shown in Fig. 13(b). Lets, be the One of the questions left open in this work is the op-
intersection ofm’ andm2 in W/. It is not difficult to show timality of this strategy. A second research direction is to
that (€, W,,) is in the region formed by, m?2 andww?  characterize terrains in which a single pursuer suffices for
(the shaded region in Fig. 13(b)). Therefore, the distanc&pture. Even though convexity is sufficient, it is not neces
betweenw’ and =’ (&, W,,) is less thanwiwi . Consider the Sary. A related question is to compute minimum number of
pursuer path composed &F (P, w) and then the segment Pursuers for a given terrain.
from w’ to 7¢(E2, W,,). The length of this path is at most
d+ D. Similar to Lemma 9¢ and D can be designed such
that the pursuer can move td&>, W,,).

VIII. CONCLUSION

APPENDIX
A. Special Case: The Highest Point is Not Unique

In this section, we consider the case that the highest point
is not unique: the highest points are on a line segment or on
a face ofT". Without loss of generality, let us assume that the
highest points are on the fage The idea is to first cleaf
which can be seen as a planeRA and then continue with
the pursuit strategy for terrains.

In order to clearf and push the evader outside it, two
different strategies can be employed. The first strategy is

@ () straightforward: the pursuer can use the lion’s move with
Fig. 13. The evader moves for the ne@{)N) steps when there is an '€SPect to any arbitrary center inside The second strategy
appearing vertex event. (a) the edge? intersects withlo. (b) the edge is a special case of our wavefront strategy. Let us denote
my, does not intersect with, . the polygonal boundary of by df. Consider the straight
skeleton [9] ofdf which is the same as the medial axis of
B Hf since thed f is convex. This straight skeleton is obtained

Lemma 12 (Disappearing Vertex Evenguppose  that py shrinkingdf as follows: move the edges 6ff in parallel
there is a disappearing vertex event in Tthe transition froggith equal speed. Continuing this shrinking process, wé wil
W to W,. Then, if during the nexO(-15) steps, the eng up with a tree which is the same as the medial axis.
evader always moves and it does not change its directiofpe shrunken polygon after each step can be seen as a
the pursuer can make progress by movingm@&, Wy).  wavefront. The pursuer can apply the proposed wavefront
Proof: Letw, be the corresponding vertex Iif, (Fig. 14).  guarding strategy to these wavefronts as well and force the
evader to exitf in order to prevent capture.
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