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The Lion and Man Game on Convex Terrains

Abstract— We study the well-known lion-and-man game in
which a lion (the pursuer) tries to capture a man (the evader).
The players have equal speeds and they can observe each
other at all times. While the game is well-studied in two
dimensional domains such as polygons, very little is known
about its properties in higher dimensions. In this paper, we
study the lion and man game on the surface of convex terrains.
We show that the lion can capture the man in a finite number
of steps which is a function of the terrain geometry.

I. I NTRODUCTION

Many robotics applications such as tracking and search
can be modeled as pursuit-evasion games. In this paper,
we study a fundamental pursuit-evasion game known as the
lion-and-man game. In the original version of this game, a
lion tries to capture a man in a circular arena. The players
have equal speeds. Various variants of the lion-and-man
game have been studied to model robotics applications. An
overview of these results can be found in the survey paper
by Chung et al. [1]. Briefly, assuming that the players move
in turns, and they can observe each other at all times, the
lion wins the game in the circular arena [2], [3] and in
simply-connected polygons [4]. Three lions are sufficient and
sometimes necessary in polygons with obstacles [5].

The lion-and-man game has been studied in higher dimen-
sions as well. However, our understanding of the properties
of the game in higher dimensions is far from complete.
Kopparty and Ravishankar showed that inRd, d + 1 lions
can capture the man if and only if the man starts inside their
convex hull [6]. Alexander et al. [7] study pursuit in more
general environments. They showed that if the environment
has non-positive curvature (i.e. it is CAT(0)), by greedily
moving toward the evader, the pursuer can eventually capture
it. The CAT(0) condition is not necessary for capture. This
is noted in [7] where they show that on a hemisphere
H ⊂ S2 ⊂ R

3 defined asH = {(x, y, z) : x2 + y2 + z2 =
1, z ≥ 0}, the pursuer wins. The hemisphere is not CAT(0).

In this paper, we further our understanding of the lion-
and-man game in higher dimensions. We study the game on
terrains and show that the lion wins the game on any convex
terrain.

A terrain is characterized by unique height values for
points in the two-dimensional plane. Our pursuit strategy on
convex terrains is based on guardingfrontiersgiven by set of
points on the terrain that are on the same height. The pursuer
starts from the highest frontier and pushes the frontier
downwards while preventing the evader from entering any
previously guarded frontier. Intuitively, the perimeter of the
frontier is increased in this downward sweep. This allows
the pursuer to use the difference between the perimeter of

two consecutive frontiers in order to make progress. In this
paper, we formalize this idea and analyze its correctness.

The paper is organized as follows. In Section II we
present the preliminary definitions we use throughout the
paper. Section III presents the general idea of the capture
strategy. In Section IV we discuss the properties of convex
terrains that are crucial for our strategy. Details of the pursuer
strategy in different configurations is presented in Section V,
Section VI and Section VII.

II. D EFINITIONS

In this section, we present concepts and definitions that
will be useful throughout the paper. The game will take
place on a terrain whose lowest point is on thez = 0 plane.
Throughout the paper, we refer to this plane as thebaseXY -
plane. We occasionally refer to this plane as theXY -plane.
Moreover, we use the coordinate frameXY Z with its origin
placed on any arbitrary point in the baseXY -plane. Fig. 7(a)
depicts our coordinate frame convention.

We are now ready to formalize the definition of a terrain.
Definition 1: A terrain is a polyhedral surface in three-

dimensional space. It is represented as a finite set of vertices
in the base plane, together with a unique height value
associated with each vertex [8]. The vertices are triangulated
which implies that the faces of the terrain are triangles inR

3.
In this paper, without loss of generality, we assume that all
terrain vertices are at different heights. However, our strategy
can be applied to those cases as well.

Definition 2: A convex terrain is a terrain such that every
point on its surface is also a point on the boundary of the
convex hull of the vertices of the terrain. In other words, a
convex terrain does not have any valleys.

Definition 3 (The Perpendicular Image):For a pointp =
(x, y, z) on the terrain, the pointq = (x, y) is called the
perpendicular image ofp onto the baseXY -plane. Similarly,
one can define the image of a path on the surface of the
terrain onto the baseXY -plane.
We will reserve the termprojection for an important ingre-
dient of our strategy.

We denote the pursuer and the evader byP andE respec-
tively. We assume that the game is played on the surface of
a convex terrain excluding theXY -plane at the base. Let us
denote this surface byT . We also denote the perimeter of the
boundary ofT by |T |. We use the following game model.
The players move in turns. Each turn takes a unit time step.
In each turn, the players can move along any arbitrary path of
length less than or equal to one (the step-size). The pursuer
and also the evader both have full-visibility: they can observe
the location of the other player. The pursuer captures the
evader if at any time, which includes the whole time interval



in one step associated with one turn, the distance between
them becomes less than or equal to one (the step-size). The
justification for this capture condition is that if we assumea
radius around the players, the pursuer captures the evader if
they collide.

Definition 4: Let p1 andp2 be two distinct points on the
same facef of T . Consider the straight line segment that
connects them onT , and denote its length byL. Also, let l
be the length of its perpendicular image (Definition 3) onto
the XY -plane. We refer to the ratioα = l

L
as the length

coefficient associated withp1 andp2.
For a specific facef , the minimum value of the length

coefficient is the cosine of the angle betweenf and the
XY -plane. This is because faces with vertical edges are
not allowed, and also the two pointsp1 andp2 are distinct.
Therefore, we have the following proposition.

Proposition 1: The length coefficients are less than or
equal to1 i.e. α ≤ 1. Also, the minimum length coefficient
is well defined in the sense that it is a finite positive number.
We refer to the minimum possible length coefficient onT as
αmin.

Definition 5 (Wavefronts):We refer to the set of points on
T which are on the same heightz as thewavefrontat z. Note
that sinceT is a convex polyhedron, the wavefront at height
z is also a convex polygon contained in the planeZ = z.
Moreover, the image of a wavefront has the same shape as
the wavefront itself.

Definition 6 (Wedge Regions and Edge Regions):Let
W i be the perpendicular image of a wavefrontW onto the
XY -plane. Suppose that the vertices ofW i are labeled as
{w1, w2, ..., wn} in the clockwise order. See Fig. 1(a) for an
illustration. We partition the region outsideW i (in the base
XY -plane) into regions of two types: theedge regionsand
the wedge regions. For an edgewiwi+1, its corresponding
edge region is the region in between the two perpendicular
lines to the segmentwiwi+1 which pass throughwi and
wi+1 respectively. For a vertexwi ∈ W i, its corresponding
wedge region is the region in between the two perpendicular
lines towi−1wi andwiwi+1 which pass throughwi.

Definition 7 (Projection onto a Wavefront):Let E i and
W i be the perpendicular images ofE and a wavefrontW
onto theXY -plane respectively. Also, suppose thatE i is
outside the region enclosed byW i. The projection of E
onto the wavefrontW is defined as follows. See Fig. 1(a).
Consider the partitioning of the exterior region ofW into
wedge regions and edge regions. There will be two cases
based on the location ofE i (Fig. 1(a)): 1) E i is inside
the edge region associated with an edgewiwi+1; 2) E i is
inside the wedge region of a vertexwi. In the first case, let
πi(E) denote the intersection of the edgewiwi+1 and the
perpendicular line to the edgewiwi+1 passing throughE i.
In the second case,πi(E) refers to the vertexwi. Then, the
projection ofE ontoW is the point onT that its image on
the base plane isπi(E) (Fig. 1(b)). We denote this point on
T as π(E ,W ). We will omit W in π(E ,W ) whenW can
be inferred from the context.

Remark 1:Notice that the perpendicular image in Defi-
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Fig. 1. (a) The partitioning of the exterior ofW i into wedge regions and
edge regions. (b) The projection ofE onto the wavefrontW .

nition 3 is different than the projection onto a wavefront in
Definition 7. The image of a pointp ∈ T is denoted bypi

while its projection ontoW is referred asπ(p,W ).

III. T HE CAPTURE STRATEGY

The idea of our pursuit strategy is the following. We first
discretize the surface ofT by a set of wavefronts as shown
in Fig. 7(a). Initially, the pursuer goes to the highest point
of T . (For now, let us assume that this point is unique.
In Appendix, we address the case where this assumption
does not hold.) The highest point is the first wavefront to
be guarded byP . Starting from this first wavefront, the
images of the wavefronts in theXY -plane grow in perimeter
as shown in Fig. 6. The pursuer then locates itself “close”
to the projection of the evader onto the current wavefront.
Shortly, we will specify what we mean by close. We will
show that by staying close to the projection of the evader onto
the wavefrontW , the pursuer can prevent the evader from
crossingW and re-contaminating the region enclosed byW

without being captured. After finite number of steps, the
pursuer makes progress towards the next wavefront. While
the pursuer is guarding the current wavefront, and also when
it makes progress to the next wavefront, it maintains the
invariant that it is stillcloseto the projection of the evader.

Definition 8: We refer to the wavefront that the pursuer
is currently guarding as thefrontier wavefront.

Throughout the paper, we denote the frontier wavefront by
W and the wavefront next to it byWn. The pursuer’s goal
is to make progress toWn.

Definition 9: Let p1, p2 ∈ W be two points on the
wavefrontW . We denote the shorter path fromp1 to p2
alongW by W (p1, p2), and its length bydW (p1, p2). We
also denote the length of the segmentpi1p

i
2 in theXY -plane

by dXY (p
i
1, p

i
2).

Our proposed pursuit strategy for guarding a wavefront
and making progress towards the next wavefront is inspired
from the following pursuer strategy in the two-dimensional
plane which we call therook move. To illustrate the idea, for
now, suppose that the game is played on theXY -plane. Let
l be a line lying on this plane that the pursuer is trying to
guard. See Fig. 2. Suppose that the evader is at the pointe

and letπ(e) be the projection of the evader ontol. Suppose



that the pursuer is at the pointp on l such that|π(e)− p| =
d ≤ 1. It is not difficult to see that the evader cannot cross
l without being captured as long asd ≤ h whereh is the
length of the segment betweene andπ(e)1 (Fig. 2(a)). The
pursuer can make progress by pushingl forward if the evader
moves to the left: the pursuer moves along they-axis for d
by going to p′ such that|p′ − p = d|. In other words, it
pushes thefrontier line l to the new linel′ which is closer
to the evader. See Fig. 2(b). We generalize the rook move
idea to the surface of a convex terrain as follows.
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Fig. 2. The illustration of the rook move in theXY -plane. (a) If the evader
crossesl, the pursuer moves to the crossing pointq. The distance between
q ande′ is less than one. Thus,E will be captured. (b) If the evader moves
to the left, the pursuer can pushl forward.

Definition 10 (The Guarding Configuration):Suppose
that the evader is outside the region enclosed byW

(i.e. points that are higher thanw), and that the pursuer
is on the wavefrontW . Consider the projection ofE
onto W , π(E), and the two paths onW from P to
π(E). The pursuer is in guarding configuration onW if
dW (P , π(E)) < dXY (E

i, πi(E)). See Fig. 1(b) for an
example.

Remark 2:Throughout the paper, for the ease of notation,
we used = dW (P , π(E)).

Lemma 1:Suppose that the pursuer is on the wavefrontW

such thatdW (P , π(E)) < dXY (E
i, πi(E)). Then, the evader

cannot crossW without being captured. See Definition 9 for
dW anddXY .

Proof: Suppose that the evader crossesW by moving
to E ′. Fig. 3 depicts the images ofW , P andE on theXY -
plane. Letq be the crossing point. Consider the evader’s path
on T from E to q. Let aT and a denote the length of this
path and its image respectively.

Now, there will be two cases:dW (P , q) ≤ a or a <

dW (P , q). If dW (P , q) ≤ a, the pursuer moves toq along
W . Since the length of the evader path fromq to E ′ is less
than1, the pursuer will capture the evader.

Otherwise, the pursuer moves alongW to the pointP ′ ∈
W such thatPP ′ = a. We show that there exists a path on
T from P ′ to E ′ that its length is less than1. Therefore,
the pursuer captures the evader according to our capture
condition by moving toP ′.

Consider the pathΠ from P ′ to E ′ which is composed of
W (P ′, q) followed by the evader path fromq to E ′. Note

1We will shortly present the proof of this claim for our generalization of
the rook move onXY -plane toT .
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Fig. 3. Image ofP , E andW onto theXY -plane. If dW (P, π(E)) <
dXY (Ei, πi(E)), the evader cannot crossW without being captured.

that we havedW (P , π(E)) < dXY (E
i, πi(E)) ≤ a ≤ aT .

Here, the first inequality is our assumption and the second
one is becauseπi(E) is the closest point toE i. Therefore,
the length ofΠ is less than the length of the evader’s path
from E to E ′ which is one. Thus, the pursuer captures the
evader by moving toP ′.

Lemma 2 (Condition ondW (P , π(E))): On the convex
terrain T , if dW (P , π(E)) < αmin

2
, then the condition

dW (P , π(E)) < dXY (E
i, πi(E)) will be satisfied.

Proof: See Fig. 4(b) which shows the images ofW , P
andE in theXY -plane. First, consider the segmentP iE i in
the base plane. We use the following proposition:

Proposition 2: The pre-image of any continuous path in
theXY -plane is a continuous path inT .

Since T is convex,P iE i is the image of a valid path on
T from P to E . Denote the length ofP iE i by a and its
corresponding path onT by aT . SinceE is not captured yet
we have1 < aT . Thus,αmin < a. We will use this property
in our proof.
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ψ h
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E i

W i

π(E)i

ψ
ha

mP i

(b)

Fig. 4. Proof of Lemma 2. Left) The images of the players and the
wavefront is considered inXY -plane. Right) TheXY -plane is shown
with the images.

For ease of notation, leth = dXY (E
i, πi(E)) and d =

dW (P , π(E)). Moreover, letm = dXY (P
i, πi(E)). Finally,

denote the angle between the two segmentsE iπi(E) and
P iπi(E) by ψ. It can be easily verified that sinceW i

is convex, we haveπ
2

≤ ψ (Fig. 5). Thus, cψ < 0.
Consequently,0 ≤ −cψ < 1.



m ≤ d ⇒ −2mhcψ ≤ −2dhcψ

α2
min < a2 ≤ d2 + h2 − 2dhcψ ⇒

0 < d2 + h2 − 2dhcψ − α2
min ⇒

0 < h2 + 2hd+ d2 − α2
min

0 < (h− (−d− αmin))(h− (−d+ αmin))

Since0 < h, we must haveαmin − d < h. Sinced <
αmin

2
(according to our assumption), we conclude thatd <

αmin−d < h. Thusd < h and the condition in Definition 10
is satisfied.

E iE i

pp

W iW i

π(E)iπ(E)i

ψψ

Fig. 5. SinceW is convex, we haveπ
2
≤ ψ.

Lemma 3:Once the pursuer establishes the guarding con-
figuration on the wavefrontW , it can maintain the config-
uration as the evader moves. In other words, if the pursuer
establishesdW (P , π(E)) < dXY (E

i, πi(E)), it can maintain
this condition asE is moving onT .

The guarding configuration allows the pursuer to prevent
the evader from crossing the frontier wavefront. We now
present the pursuer’s strategy that is based on the evader’s
motion. Without loss of generality, we assume that initially
the pursuer locates itself to the left ofπ(E ,W ). We then use
the clockwise direction, as the base direction that the pursuer
uses for making progress.

If the evader does not move in its current turn, or if it
changes its direction and moves backward, we show that the
pursuer’s distance fromπ(E ,Wn) is less than1. Thus, the
pursuer can move toWn while it is on π(E ,Wn) in only
one step. On the other hand, if the evader moves in the same
direction, we show that the pursuer can make progress to
Wn after at mostO(N) steps whereN is finite and we will
specify it later in Section VII. In summary, the events that
the pursuer makes progress are the following: 1) the evader
does not move in its current turn, 2) the evader moves in
the counter clock-wise direction in its current turn, 3) the
evader moves in the clock-wise direction for the nextO(N)
steps. In all of these events, we show that the pursuer can
move ontoπ(E ,Wn). Afterwards, the evader cannot cross
Wn without being captured. Therefore, the evader is being
squeezed betweenWn and the boundary ofT , and it will be
captured in finite number of steps.

Observation 1:Observe that after moving toπ(E ,Wn),
the pursuer needs only one extra turn to locate itself in the
guarding configuration i.e. at distanced from π(E ,Wn).

Theorem 1 (Capture on Convex Terrains):Suppose that
the lion and man game is played on the surface of a
convex terrainT . The proposed pursuit strategy, guaran-
tees captures in at mostO(DT

D
.

|T |
1−d−D

) steps. Here|T |
denotes the perimeter ofT , DT is the diagonal ofT . Also
D = max d(W,Wn) is the designed distance between two
consecutive wavefronts, andd = dW (P , π(E ,W )) is the
distance that the pursuer maintains from the projection of
E ontoW (also a design parameter of the strategy).

IV. PROPERTIES OF THEWAVEFRONTS

We first study the discrete events as the frontier wave-
front is moved downwards. We show that the combinatorial
changes to the frontier occur at vertices ofT which we refer
to them as thevertex events. Consider the wavefrontW at
heightz and letF (z) denote the set of faces thatW intersects
with them. We interchangeably use the notationF (W ) to
denote this set. Also, suppose thatwiwi+1 is an edge inW
which lies onf ∈ F (z). We refer towiwi+1 as the edge
associated withthe facef .

edges associated with

 the same face

Disappearing vertex event

Appearing vertex event

Fig. 6. The image of the wavefronts is shown. Edges associated with
the same face are parallel. As the wavefront reaches a terrain vertex, some
edges disappear. Afterwards, new edges appear.

Lemma 4 (Properties of the Wavefronts):1) Suppose
W1 andW2 are two wavefronts at heightsz andz+ ǫ

respectively such thatF (z) = F (z+ ǫ) = F . Let f be
a face inF , and letw1w2 andw′

1w
′
2 be the two edges

on W1 andW2 respectively that are onf . Then, their
perpendicular images are parallel to each other. See
Fig. 7 for an illustration.

2) Let v be a vertex ofT which is at heightz, and let
W be the wavefront atz. Also, suppose thatW1 is the
wavefront atz − ǫ1 such that forz − ǫ1 ≤ h < z we
haveF (z − ǫ1) = F (h) = L. Similarly, suppose that
W2 is the wavefront atz + ǫ2 such that forz < h ≤
z + ǫ2 we haveF (z + ǫ2) = F (h) = U . Next, denote
the two faces adjacent tov in W by f1 and f2. Let
L′ ⊂ L−{f1, f2} be faces adjacent tov that are below
v. Similarly, defineU ′. Then, as the frontier wavefront
moves fromz + ǫ2 to z, the edges associated withU ′

disappear. On the other hand, as the frontier moves
from z to z− ǫ1 new edges associated withL′ appear.
In the rest of the paper, we refer to these events as the



vertex events: the former one asdisappearing events,
and the latter one asappearing events. See Fig. 7.
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Fig. 7. The pursuer starts fromv1. There are two vertex events: atv2
andv3. The image of edges associated with the same face are parallel e.g.
wi
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2
. Note the appearing edge onf3 below v3 which is shown

in dots (left), and also the disappearing edge onf4 abovev3 (left).

Definition 11 (Distance Between Two Wavefronts):
The distance between two consecutive wavefrontsW

and Wn, denoted byd(W,Wn), is defined as follows.
First, suppose that there is not vertex event betweenW

and Wn. Consider the vertex wavefrontsw ∈ W and
wn ∈ Wn such that the segmentwwn ∈ T . In other
words, wwn is part of an edge ofT (Fig. 7). Then
d(W,Wn) = dXY (W,Wn) = max dXY (w

i, wi
n) where the

maximum is taken over all such segmentswwn. Finally,
let us consider the case that there is a vertex wavefront
betweenW andWn. In this case, we assume thatW ′

n is the
wavefront if there were no vertex event. We then consider
the distance betweenW andW ′

n as d(W,Wn). See Fig. 7
for an illustration.

Definition 12 (Discretization ofT by the Wavefronts):
The wavefronts are chosen such that the maximum distance
between any two consecutive wavefronts isD. In fact, D
quantifies the progress that the pursuer achieves by moving
from W to Wn. Later as we present the strategy, we also
present the conditions that we need forD (Eq. 1, Eq. 2,
Eq. 3).

V. THE EVADER STAYS STILL IN ITS TURN

In this section, we consider the case that the evader
remains still in its turn. The pursuer uses this extra turn in
order to make progress towards the next wavefront. The key
idea is thatd(W,Wn) is small enough such that the pursuer
can move to the projection ofE ontoWn.

Lemma 5 (When There is No Vertex-Event):Consider
the case thatE did not move in its move. Suppose that
there is no vertex event in betweenW andWn. Then, the
pursuer can locate itself onπ(E ,Wn) in one step.

Proof: There will be two cases based on whether the
evader is in a wedge region or an edge region.

1) E i is in the wedge region of a vertexw: Let wn be
the vertex inWn which is associated with the same
faces as the faces adjacent tow. Also, let m1 and
m2 be the images of the two wavefront edges that are
adjacent tow (Fig. 8). Moreover, letl and l′ denote

the two perpendicular lines tom1 andm2 respectively.
Finally, let m1

n and m2
n be the lines parallel tom1

andm2 drawn fromwn. The wavefront vertexwn can
be inside the wedge region ofw or outside it. In the
following, without loss of generality, we assume that
E i is to the left of the linewiwi

n.
a) wn is inside the wedge region ofw: In this case,

sinceW andWn are convex polygons,π(E ,Wn)
will be inside the region formed byl, l′, m1

n and
m2

n (The shaded region in Fig. 8). It is not diffi-
cult to show that the distance betweenπ(E ,Wn)
and w is less thanwiwi

n. Since wiwi
n ≤ D,

the pursuer can move tow and then move to
π(E ,Wn).

b) wn is outside the wedge region ofw: Similarly,
we can show thatπ(E ,Wn) is inside the region
formed byl1, m1

n andwwn. The rest of the proof
is similar to the previous case.

P i

E i

wi

wi
n

W i

W i
nm1

m2

m1
n

m2
n

l′

l

Fig. 8. The evader does not move in its turn. The case thatEi is in the
wedge region ofw. We show thatπ(E,Wn) is inside the shaded region.
Sincewiwi

n ≤ D, the pursuer can move toπ(E,Wn).

2) E i is in the edge region of an edgem: This case is
illustrated in Fig. 9. Letmn ∈ Wn be the edge inWn

which is parallel tom ∈ W . There will be two case:
1) π(E ,Wn) ∈ mn, 2) π(E ,Wn) 6∈ mn. The former
case is straightforward: the pursuer simply moves to
π(E ,W ) and then it moves toπ(E ,Wn) along the
perpendicular line (Fig. 9). In the latter case, it can be
shownπi(E ,Wn) is inside the region formed by the
perpendicular line tom, mn and the segment between
πi(E ,W ) andwi

n. Sincewiwi
n ≤ D, the pursuer can

move toπ(E ,Wn) in only one step.

Lemma 6 (Appearing Vertex Event):Consider the case
that E did not move in its move. Suppose that there is a
disappearing vertex event in the transition fromW to Wn.
Then, the pursuer can locate itself onπ(E ,Wn) in one step.
Proof:

Let w be the corresponding wavefront vertex inW . In
the following, we consider the baseXY -plane. See Fig. 10
for an illustration. Letm1 and m2 be the images of the
two wavefront edges that are adjacent tow. Also, let m1

n

andm2
n be the lines parallel tom1 andm2 in Wn. Let w1

n
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Fig. 9. The evader does not move in its turn. The case thatEi is in the
edge region ofm. Left) π(E,Wn) ∈ mn. Right) π(E,Wn) 6∈ mn. We
show thatπ(E,Wn) is in the shaded region.

andw2
n be the vertices inWn that are adjacent tom1

n and
m2

n respectively. Finally, letl1 and l2 be the two lines that
are perpendicular tom1 and m2 drawn fromw1

n and w2
n

respectively.
Now, E i can be inside the region formed byl1 and l2 or

outside it. If it is outside, we can use the result of Lemma 5.
Therefore, suppose thatE i is inside the region formed

by l1 and l2. Let h1, h2 denote the length ofwiw1
n and

wiw2
n respectively. Moreover, leth3 denote the length of the

segment betweenwi and the intersection ofm1
n andm2

n. We
show that the pursuer can move tow and then fromw it can
move toπ(E ,Wn). Without loss of generality, assume that
hm = max{h1, h2, h3}. Refer to Fig. 10 for anglesψ1, ψ2

andψ3. Also, let x be the distance betweenπ(w1
n,W ) and

w. Then,x =
hmβsψ1

tψ2

. Therefore, the pursuer’s distance to

π(E ,Wn) is at mostx+hm + d =
hmβsψ1

tψ2

+hm + d. Since

hm ≤ D, this distance is less thanD(1+
βsψ1

tψ2

)+d. We can
designd = dW (P , π(E ,W )) andD = max d(W,Wn) such
that:

D(1 +
βsψ1

tψ2

) + d ≤ 1. (1)

Consequently, the pursuer can move tow and then to
π(E ,Wn) in one step.

m1

m2

m1
n

m2
n

w1
n

w2
n

h1 h2

hm

l2

l1 ψ2

ψ1

wi

P i

E i

W i

W i
n

Fig. 10. The case that the evader is not moving and there an appearing
vertex event.

Lemma 7 (Disappearing Vertex Event):Consider the
case thatE did not move in its move. Suppose that there is
an appearing vertex event in the transition fromW to Wn.
Then, the pursuer can locate itself onπ(E ,Wn) in one step.
Proof: The proof is similar to Lemma 6.

VI. T HE EVADER MOVES COUNTER CLOCK-WISE

We now consider the case the evader is moving in counter
clock-wise direction in its current turn. LetEn be the new
location the evader (Fig. 11). From convexity ofW , one can
show thatdW (P , π(En,W )) ≤ (1−dW (P , π(E ,W )) = (1−
d). Also, we designedd(W,Wn) such that for all pointsp
we haved(π(p,Wn), π(p,W )) ≤ D. Therefore, if we design
d andD such that:

1− d+D ≤ 1 ⇒ D ≤ d (2)

the pursuer can first move toπ(En,W ) alongW and then it
can move toπ(En,Wn).

π(En)
i

π(E)i

P i

E i

E i
n

W i

W i
n

Fig. 11. The evader moves counter clockwise.

VII. T HE EVADER MOVES IN CLOCK-WISE DIRECTION

FORO(N) STEPS

We now consider the case that the evader is moving in
the clock-wise direction for the nextO(N) = O( |T |

1−d−D
)

steps. First, we can assume that during theseO( |T |
1−d−D

)
it is always moving in its turn because if it stays still,
then the pursuer can use the strategy in Section V for
making progress. Also, if in one of these turns, the evader
moves counter clock-wise the pursuer can use the strategy in
Section VI for going towardWn. We first present the case
that there is no vertex event in betweenW andWn.

We show that if the evader moves in the same clock-wise
direction for O( |T |

1−d−D
) steps, its projection ontoW will

circumnavigate aroundW for a complete round. In other
words, π(E ,W ) will come back to the same point onW
afterO( |T |

1−d−D
) steps. We will use this observation to show

that if π(E ,W ) completes such round, the players will be
eventually in a configuration that allows the pursuer to move
towardπ(E ,Wn). We refer to this configuration as thewide-
turn configuration.

Lemma 8:Consider the nextO( |T |
1−d−D

) time steps where
|T | denotes the perimeter of the boundaryT . Then, we will
have at least one of the following events in theseO( |T |

1−d−D
)

steps: 1) for at least one turnE does not move, or 2) it
moves counter clock-wise, or 3)E circumnavigates around
W i.e. π(E ,W ) comes back to the same point onW .
Proof: Suppose that we don’t have none of the the first
and the second events. We show that for sure we will have
the third event. Since the first and the second event does
not occur, the evader is moving clock-wise. LetE and En
denote the location of the evader before and after a turn.



For simplicity let us use the notationsde = dW (E , En) and
d = dW (P , π(E ,W )). Obviously, we have0 ≤ de ≤ 1. Con-
sider the path fromP to π(En,Wn) which is composed of
W (P , π(En,W )) and then the shortest path fromπ(En,W )
to π(En,Wn). The length of this path isdp = d + de +D.
Now, if dp ≤ 1, the pursuer can move toπ(En,Wn) and
make progress. Therefore, for contradiction, suppose that
1 < dp = d + de + D. Consequently,1 − d − D < de.
In other words, after each step, the evader’s projection onto
W moves for at least1 − d − D. Therefore, after at most

|T |
1−d−D

steps,π(E ,W ) comes back to the same point onW .
Here, |T | denotes the perimeter ofT .

Now that we knowπ(E ,W ) circumnavigates aroundW ,
we show that the pursuer will be in a good configuration
for making progress: the wide-turn configuration. The wide-
turn configuration is the following. Fig. 12(a) shows an
illustration of this configuration. Suppose thatw is a vertex
of W . Let ww′ be the image of the edge adjacent tow in
W , andf be the face thatww′ ∈ f . Let wnw

′
n be the image

of the edge associated with the same facef in Wn. Note
thatww′ andwnw

′
n are parallel to each other. Suppose that

the perpendicular toww′ which passes fromw intersects
with wnw

′
n inside the edgewnw

′
n. Let qi be the point of

intersection. The players will be in wide-turn configuration
if the evader crosses the wedge region of such vertexw. In
the following lemma, we prove that in this configuration the
pursuer can make progress towardWn.

Lemma 9:Suppose that the evader and the pursuer are
in the wide-turn configuration. Then, the length of the path
W (P , w) followed by the segmentwq is less than or equal to
the length of the path that the evader travels when it crosses
the wedge region ofw.

Proof: Suppose that the evader crosses the wedge
region ofw by moving fromE1 to E2. Consider the segment
in between the images ofP andE1 in the baseXY -plane.
SinceT is convex, this segment is the image of a valid path
on T . Let us denote the length of this path onT from P to
E1 by aT . Also, leta be the length of the image of this path.
SinceE is not captured atE1, then it must be that1 ≤ aT .
Therefore,αmin ≤ a.

Next, let b be the length of the segment betweenE i
1 and

wi. Notice thatP is in the guarding configuration. Thus,
the distance betweenP i andwi is d. Therefore, using the
Pythagorean theorem, we haveα2

min ≤ a2 = d2 + b2. Thus,
√

α2
min − d2 ≤ b.

Let l denote the length of the path betweenE i
1 and E i

2.
Also, let us denote the angle of the wedge region atw by β.
Then, sinβ

√

α2
min − d2 ≤ b sinβ ≤ l. Therefore, the path

that the evader travels onT from E1 to E2 is longer than
sinβ

√

α2
min − d2. Therefore, as long as:

d ≤
αmin sinβ
√

1 + sinβ2
(3)

we would haved < sinβ
√

α2
min − d2. Consequently,

the pursuer can move tow, and use the remaining
sinβ

√

α2
min − d2 − d for moving toWn.

Next, let us consider the pursuer’s move toWn. The
pursuer moves toq such that its image moves along the
segmentwqi. Let cT denote the length of this path onT ,
andc denote the length of its image i.e.wqi. Sincec = αcT
and αmin ≤ α ≤ 1 we havec ≤ cT ≤ c

αmin
. Since

c ≤ αmin(sinβ
√

α2
min − d2 − d) (Definition 12), we have

cT ≤ sinβ
√

α2
min − d2 − d. Thus, the pursuer can move to

q along the aforementioned path.

E i
1 E i

2

w

wn

w′

w′
n

qi

W i

W i
n

(a)

w

wn

w′

w′
n

W i

W i
n

ψ

γ

(b)

Fig. 12. Left) The wide-turn configuration. Right) The proofof Lemma 10.

Lemma 10 (When There is No Vertex-Event):Suppose
that the pursuer is currently guardingW , and letWn be the
next wavefront such that there is no vertex event in between
W andWn. Then, if during the nextO( |T |

1−d−D
) steps, the

evader always moves and it does not change its direction,
the players will be in the wide-turn configuration. Thus, the
pursuer can make wide-turn progress.

Proof: We show that the wide-turn configuration will
eventually arise by contradiction. In particular, since the
evader is circumnavigating aroundW , it crosses the wedge
regions of all vertices ofW . We show that it is impossible
that none of these events is a wide-turn configuration.

Suppose that the evader is crossing the wedge region ofw.
For this configuration to not be a wide-turn configuration, the
vertexwn must lie outside the wedge region ofw as shown
in Fig. 12(b). Let us denote the angle betweenwnw andww′

by ψ. Also, letγ be the angle betweenwwn and the second
edge adjacent town on Wn. Observe thatγ < ψ.

Let h2 be the distance between the two edgesww′ and
wnw

′
n. Note that these two edges are parallel. Similarly, let

h1 be the distance between the other two parallel edges that
are adjacent tow andwn respectively.

Observe that sinceγ < ψ we haveh1 < h2. We will use
this property to conclude our contradiction.

Let us denote the vertices onW by {w1, w2, · · · , wm}.
Also, lethj be the distance between the edge onW and the
edge onWn that are associated with the same face. Since the
evader is circumnavigating aroundW , it crosses the wedge
regions of allwi’s. If none of these events are wide-turn
configuration, then we must haveh1 < h2 < · · · < hm <

h1. In other words,h1 < h1 which is a contradiction.
Lemma 11 (Appearing Vertex Event):Suppose that there

is an appearing vertex event in the transition fromW to Wn.
Then, if during the nextO( |T |

1−d−D
) steps, the evader always

moves and it does not change its direction, the pursuer can
make progress by moving toπ(E ,Wn). Proof: Let w
be the corresponding vertex onW (Fig. 13). Also, letm1 and



m2 be the two edges inW i that are adjacent tow. Moreover,
let m1

n andm2
n be the edges inWn that are parallel tom1

andm2 respectively. Also, letw1
n andw2

n be the two vertices
in Wn that are adjacent tom1

n andm2
n. Let l1 and l2 be the

perpendicular lines tom1 andm2 drawn fromwi.
Since π(E ,W )i circumnavigates aroundW , the evader

will cross the wedge region ofw. Now, there will be two
cases. First, the edgem2

n intersectsl2 (Fig. 13(a)). In this
case, we have a wide-turn configuration and the proof follows
from Lemma 9.

Second, the edgem2
n does not intersectl2 (Fig. 13(b)).

In this case, consider the auxiliary wavefrontW ′
n that is

obtained fromWn as follows:Wn(w
1
n, w

2
n) is replaced by

the m1
n and m2

n as shown in Fig. 13(b). Letwn be the
intersection ofm1

n andm2
n in W ′

n. It is not difficult to show
thatπi(E2,Wn) is in the region formed byl2, m2

n andww2
n

(the shaded region in Fig. 13(b)). Therefore, the distance
betweenwi andπi(E2,Wn) is less thanwiwi

n. Consider the
pursuer path composed ofW (P , w) and then the segment
from wi to πi(E2,Wn). The length of this path is at most
d+D. Similar to Lemma 9,d andD can be designed such
that the pursuer can move toπ(E2,Wn).
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n

w1
n
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n
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P i

W i

W i
n
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Fig. 13. The evader moves for the nextO(N) steps when there is an
appearing vertex event. (a) the edgem2

n intersects withl2. (b) the edge
m2

n does not intersect withl2.

Lemma 12 (Disappearing Vertex Event):Suppose that
there is a disappearing vertex event in the transition from
W to Wn. Then, if during the nextO( |T |

1−d−D
) steps, the

evader always moves and it does not change its direction,
the pursuer can make progress by moving toπ(E ,Wn).
Proof: Let wn be the corresponding vertex inWn (Fig. 14).
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n
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n

Fig. 14. The evader moves for the nextO(N) steps when there is a
disappearing vertex event.

Let m1
n andm2

n be the two edges inWn that are adjacent
to wn. Also, let m1 and m2 be the two edges inW that

are parallel tom1
n and m2

n. Let w1 and w2 be the two
vertices that are adjacent tom1 and m2 (Fig. 14). Notice
that as the evader crosses the wedge region ofw2

n, we have
a wide-turn configuration. Therefore, Lemma 9 applies and
thus the pursuer can make progress towardsWn.

VIII. C ONCLUSION

We studied the lion and man game on convex terrains and
presented a pursuit strategy which guarantees that the pursuer
can reduce the distance between the players to the step size
in finite time. The capture time is a function of the terrain’s
properties such as its height and maximum slope as well as
the perimeter of its projection onto the base plane.

One of the questions left open in this work is the op-
timality of this strategy. A second research direction is to
characterize terrains in which a single pursuer suffices for
capture. Even though convexity is sufficient, it is not neces-
sary. A related question is to compute minimum number of
pursuers for a given terrain.

APPENDIX

A. Special Case: The Highest Point is Not Unique

In this section, we consider the case that the highest point
is not unique: the highest points are on a line segment or on
a face ofT . Without loss of generality, let us assume that the
highest points are on the facef . The idea is to first clearf
which can be seen as a plane inR2 and then continue with
the pursuit strategy for terrains.

In order to clearf and push the evader outside it, two
different strategies can be employed. The first strategy is
straightforward: the pursuer can use the lion’s move with
respect to any arbitrary center insidef . The second strategy
is a special case of our wavefront strategy. Let us denote
the polygonal boundary off by ∂f . Consider the straight
skeleton [9] of∂f which is the same as the medial axis of
∂f since the∂f is convex. This straight skeleton is obtained
by shrinking∂f as follows: move the edges of∂f in parallel
with equal speed. Continuing this shrinking process, we will
end up with a tree which is the same as the medial axis.
The shrunken polygon after each step can be seen as a
wavefront. The pursuer can apply the proposed wavefront
guarding strategy to these wavefronts as well and force the
evader to exitf in order to prevent capture.
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