Abstract
This paper presents iris (Iterative Regional Inflation by Semidefinite programming), a new method for quickly computing large polytopic and ellipsoidal regions of obstacle-free space through a series of convex optimizations . These regions can be used, for example, to efficiently optimize an objective over collision-free positions in space for a robot manipulator. The algorithm alternates between two convex optimizations: (1) a quadratic program that generates a set of hyperplanes to separate a convex region of space from the set of obstacles and (2) a semidefinite program that finds a maximum-volume ellipsoid inside the polytope intersection of the obstacle-free half-spaces defined by those hyperplanes. Both the hyperplanes and the ellipsoid are refined over several iterations to monotonically increase the volume of the inscribed ellipsoid, resulting in a large polytope and ellipsoid of obstacle-free space. Practical applications of the algorithm are presented in 2D and 3D, and extensions to \(N\)-dimensional configuration spaces are discussed. Experiments demonstrate that the algorithm has a computation time which is linear in the number of obstacles, and our matlab [18] implementation converges in seconds for environments with millions of obstacles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben-Tal, A., Nemirovski, A.: More examples of CQ-representable functions/sets. Lectures on Modern Convex Optimization: Analysis. Algorithms and Engineering Applications, pp. 105ā110. MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA (2001)
Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)
Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. AAAI 6, 942ā947 (2006). http://www.aaai.org/Papers/AAAI/2006/AAAI06-148.pdf
Eidenbenz, S.J., Widmayer, P.: An approximation algorithm for minimum convex cover with logarithmic performance guarantee. SIAM J. Comput. 32(3), 654ā670 (2003). http://epubs.siam.org/doi/abs/10.1137/S0097539702405139
Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., Perez DāArpino, C., Deits, R., DiCicco, M., Fourie, D., Koolen, T., Marion, P., Posa, M., Valenzuela, A., Yu, K.T., Shah, J., Iagnemma, K., Tedrake, R., Teller, S.: An architecture for online affordance-based perception and whole-body planning. J. Field Robot. (2014). http://dspace.mit.edu/handle/1721.1/85690
Feng, H.Y.F., Pavlidis, T.: Decomposition of polygons into simpler components: feature generation for syntactic pattern recognition. IEEE Trans. Comput. 100(6), 636ā650 (1975). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869
Fischer, P.: Finding maximum convex polygons. In: sik, Z. (ed.) Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 710, pp. 234ā243. Springer, Berlin (1993). http://link.springer.com/chapter/10.1007/3-540-57163-9_19
Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1 (2014). http://cvxr.com/cvx
Gurobi Optimization Inc: Gurobi optimizer reference manual (2014). http://www.gurobi.com/
Khachiyan, L.G., Todd, M.J.: On the complexity of approximating the maximal inscribed ellipsoid for a polytope. Math. Program. 61(1ā3), 137ā159 (1993). http://link.springer.com/article/10.1007/BF01582144
Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995)
Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. In: Proceedings of the Twentieth annual symposium on Computational Geometry, pp. 17ā26 (2004). http://dl.acm.org/citation.cfm?id=997823
Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 140, pp. 369ā383. Springer, Berlin (1982). http://link.springer.com/chapter/10.1007/BFb0012784
Liu, H., Liu, W., Latecki, L.: Convex shape decomposition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 97ā104 (2010)
Lozano-Perez, T.: Spatial planning: a configuration space approach. IEEE Trans. Comput (2), 108ā120 (1983). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1676196
Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.P.: Voronoi-delaunay analysis of voids in systems of nonspherical particles. Phys. Rev. E 59(6), 7205 (1999). http://pre.aps.org/abstract/PRE/v59/i6/p7205_1
Mamou, K., Ghorbel, F.: A simple and efficient approach for 3d mesh approximate convex decomposition. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3501ā3504 (2009)
MATLAB: version 8.2.0.701 (R2013b). The MathWorks Inc., Natick, MA (2013)
Mattingley, J., Boyd, S.: CVXGEN: Code generation for convex optimization (2013). http://cvxgen.com/docs/index.html
Mosek ApS: Inner and outer lowner-john ellipsoids (2014). http://docs.mosek.com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
Mosek ApS: The MOSEK optimization software (2014). http://www.mosek.com/
Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: A sample-based convex cover for rapidly finding an object in a 3-d environment. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, (ICRA 2005). pp. 3486ā3491. IEEE (2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570649
Sastry, S., Corti, D.S., Debenedetti, P.G., Stillinger, F.H.: Statistical geometry of particle packings.i.algorithm for exact determination of connectivity, volume, and surface areas of void space in monodisperse and polydisperse sphere packings. Phys. Rev. E 56(5), 5524ā5532 (1997). http://link.aps.org/doi/10.1103/PhysRevE.56.5524
Acknowledgments
This work was supported by the Fannie and John Hertz Foundation and by MIT CSAIL. The authors also wish to thank the members of the Robot Locomotion Group at CSAIL for their advice and help.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Deits, R., Tedrake, R. (2015). Computing Large Convex Regions of Obstacle-Free Space Through Semidefinite Programming. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-16595-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16594-3
Online ISBN: 978-3-319-16595-0
eBook Packages: EngineeringEngineering (R0)