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Abstract. Conventional scene flow containing only translational vec-
tors is not able to model 3D motion with rotation properly. Moreover,
the accuracy of 3D motion estimation is restricted by several challenges
such as large displacement, noise, and missing data (caused by sensing
techniques or occlusion). In terms of solution, there are two kinds of
approaches: local approaches and global approaches. However, local ap-
proaches can not generate smooth motion field, and global approaches is
difficult to handle large displacement motion. In this paper, a complet-
ed dense scene flow framework is proposed, which models both rotation
and translation for general motion estimation. It combines both a local
method and a global method considering their complementary charac-
teristics to handle large displacement motion and enforce smoothness
respectively. The proposed framework is applied on the RGB-D image
space where the computation efficiency is further improved. According
to the quantitative evaluation based on Middlebury dataset, our method
outperforms other published methods. The improved performance is fur-
ther confirmed on the real data acquired by Kinect sensor.

1 Introduction

Dense scene flow (3D motion) estimation is a challenging research task in com-
puter vision. Consumer RGB-D cameras like Kinect, which provide relatively
reliable depth information, promote a trend to estimate scene flow from RGB-D
data. Unlike most conventional scene flow methods [1–5] generating only trans-
lation vectors, completed scene flow methods can acquire both rotation and
translation information, which is more favorable for two main reasons. The first
reason is that it can model the general 3D rotational motion in the physical
world. The second reason is that it provides abundant temporal information for
high-accuracy vision tasks (e.g. 3D reconstruction).

However, it is very challenging to estimate completed scene flow from RGB-
D data. The first challenging problem is that large displacement motion. Large
displacement motion often indicates the searching dimension and range for scene
flow are both large. Without good initial or candidate values, it is difficult to
obtain accurate and robust estimates. The second problem is that there usually
exists noises and missing data in the captured RGB-D data. The RGB-D data
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RGB-D scene flow Conventional Scene Flow Completed Scene Flow

Local method Hadfield and Bowden [1] Hornáček et al. [10]

Global method

Gottfried et al. [2] Our work

Herbst et al. [3]

Quiroga et al. [4]

Zhang et al. [5]

Table 1. Classification for scene flow according to conventional or completed
scene flow modeling, and local or global approach employed in the method.

may be affected or even disappeared from the reference image to the target
image.

Currently, the solutions for motion estimation can be divided into two types:
local approaches and global approaches. Local approaches only focus on feature
consistency between the corresponding points (or their local supporting areas)
on two neighboring frames on the time domain. Some local approaches [6–8] can
address the displacement issue, since they can employ a random search strategy.
However, they can not generate very accurate and smooth motion field. Global
approaches are able to further consider the spatial relation of all points in the
image, such as occlusion and smoothness. Since global approaches model the
complex spatial relation, a limitation is that they often trap into local minima
and require good initial values to achieve accurate performance [9].

In this paper, we propose a new scene flow estimation framework to address
these challenging issues. Different from previous methods, our framework fully
combines the complementary advantages of a local method and a global method,
and avoid their corresponding drawbacks. The local method is utilized to provide
good candidate values for the global method to overcome large displacement mo-
tion. The global method combines these candidate values by explicitly modeling
occlusion and enforcing smoothness for good-quality results. In addition, we fur-
ther handle the missing data issue caused by sensing techniques and occlusion.
Our contributions can be summarized as follows: (1) We present a framework
to combine the advantages of local and global approaches, i.e. handling large
displacement and enforcing smoothness, respectively. (2) We give a new formu-
lation of scene flow estimation that is able to further handle missing data caused
by various reasons. (3) We propose compute the matching cost for each point in
a 3D local supporting area with adaptive weights, which is more robust to noise.
(4) We convert 2D motion as initial values and reduce the searching dimension
in the optimization, which improves the accuracy and efficiency.

2 Related Work

Scene flow is 3D motion in the physical world. Compared with optical flow, scene
flow has view-independent characteristics, which is preferred in many vision
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Fig. 1. Framework overview.

applications like action recognition [11]. We refer the readers to optical flow [12]
and scene flow literatures [13] for more details about the similarity and difference.

Most scene flow methods [14–16] employ only RGB stereo images. Until re-
cent years, some RGB-D image-based methods have emerged thanks to the de-
velopment of consumer RGB-D cameras. The classification for existing scene flow
methods are shown in Table 1. Zhang et al. [5] proposed a two-step framework
consisting a global optimization and a bilateral filtering to compute scene flow.
Hadfield and Bowden [1] estimated the scene flow using a particle filtering tech-
nique. Gottfried et al. [2] presented an extended optical flow framework for the
estimation of range flow fields from RGB-D video sequences captured by Kinect.
Herbst et al. [3] presented a variational method for dense 3D motion estimation
for rigid motion segmentation. Quiroga et al. [4] solved the scene flow problem
in a variational framework combining local and global constraints.

These conventional scene flow methods only employ translation in the motion
modeling and are not able to handle large displacement motion, since large dis-
placement motion usually contains complex components including rotation and
translation. Completed scene flow of rotation and translation information can
model 3D motion better and generate more precise results than using transla-
tion only. Recently, Hornáček et al. [10] proposed a completed scene flow method.
However, this method estimated the scene flow relying heavily on a local method,
which may introduce error in occlusion detection and can not generate very ac-
curate motion field. Our framework only derive good initial and candidate values
from the local method, and estimate the scene flow with explicitly modeling the
occlusion and smoothness in the global method.

3 Our Framework

Figure 1 shows the overview of the framework. Our framework starts with a local
optical flow named NRDC [17] to generate completed optical flow from RGB
image pair. We transform the optical flow into scene flow as good initial values
for our local scene method. Based on the initial values, our local method combine
cross-modal RGB color and depth information to refine the scene flow. Next,
we derive a set of candidate motion patterns from the local scene flow results.
Finally, the set of candidate motion patterns are fused by further modeling
occlusion and enforcing 3D smoothness in a global approach. Details will be
given in following sections.

Given two RGB-D images {I,D} and {I ′, D′}, we aim to compute motion
from the reference image {I,D} to the target image {I ′, D′}. Each pixel p in the
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Fig. 2. NRDC and complete scene flow parameterization. To clearly see the rotation
change for a point, we use a square patch with a principal direction vector to represent
the point.

reference image has RGB color I(p) and depth D(p). A pixel p is considered to
be valid if its depth value is provided in the depth map. Thus, each valid pixel
p can be deemed as a 3D point P with color information in the scene.

The 3D coordinate of P = {XP, YP, ZP} is compute by back-projecting
p using its depth value D(p) and intrinsic camera parameters K using P =
Π−1(p) = D(p) · K−1p̃, and vice versa p = Π(P). Here, Π is the projection
operation, while Π−1 means back-projection operation. Let V = (R,T) ∈ SE(3)
denotes a 6-DoF (Degree of Freedom) motion in 3D, where R ∈ SO(3) and
T ∈ R3. This completed scene flow is employed in our framework. Our goal is
to assign such a 6-DoF scene flow VP to each point P in the reference RGB-
D image. The predicted 3D position of point P with motion VP = (RP,TP)
denotes P′ = VP(P) = RPP + TP.

3.1 Initialization from 2D Optical Flow

Some 2D optical flow methods deal with large displacement on the image plane,
since the search dimension is smaller than the scene flow situations. Thus, we
choose an efficient method named NRDC [17] to generate initial values. N-
RDC can generate 2D motion field includes 2-DoF translational vectors tp
(see Figure 2). However, the required motion parameters for our method is
VP = {RP,TP}. We give a simple approach to enable the conversion from
2D motion field into 3D completed scene flow.

In order to compute rotation matrix, we intuitively define each point P hav-
ing corresponding 2D and 3D principal directions. 3D principal direction dP

on the 3D object surface which is orthogonal to its normal nP, and 2D prin-
cipal direction is the projection of 3D principal direction on the image plane.
Inspired by [18], we adopt the prominent orientation in SIFT feature detec-
tion [19] as the 2D principal directions, i.e. [sin(θP), cos(θP)] for the point P and
[sin(θP′), cos(θP′)] for the point P′. According to our definition, 3D principal
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direction vectors can be then computed by

dP = orthonorm([sin(θP), cos(θP), 0]T,nP), (1)

dP′ = orthonorm([sin(θP′), cos(θP′), 0]T,nP′), (2)

where orthonorm(·, ·) is the Gram-Schmidt orthonormalization procedure. The
rotation variation of a point is reflected by the variations of its normal and
principal directions: nP′ = RPnP and dP′ = RPdP′ . Thus, we can calculate
the 3D rotation matrix RP of the point P by

RP = [nP′ ,dP′ ,nP′ × dP′ ] · [nP,dP,nP × dP]−1. (3)

Once the rotation is obtained, the translational vector of the point P can also
be simply computed by

TP = P′ −RP ·P. (4)

3.2 Refinement using Local Method

The motion initial value from the optical flow only concern RGB color informa-
tion. Thus, the major principle for optimizing the local scene flow estimates is
that multi-modal RGB-D features (descriptors) consistency for a point in the
reference image and its corresponding position in the target image. To address
the noise and missing data issue, for a point P with a motion VP, we aggregate
cost values of points using adaptive weights and reliability in a corresponding
3D supporting area. Our goal in the local is to reduce overall matching cost of
all the points in the reference image:

Elocal(V) =
∑
P

Clocal(P,VP). (5)

where Clocal(P,VP) is the 3D supporting patch-based matching cost for the
point P with the motion VP, and it is defined by

Clocal(P,VP) =

∑
Q∈S(P)

ω(P,Q) ·R(Q) ·R′(Q′) · C(Q,VP)∑
Q∈S(P)

ω(P,Q) ·R(Q) ·R′(Q′)
, (6)

where S(P) is the 3D supporting area for the point P, ω(P,Q) is the weighting
function which gives the probability of points P and Q on a same surface, R
and R′ are the reliability maps for the reference and target RGB-D image re-
spectively, and C(Q,VP) is the point-based matching cost for the point P with
the motion VP.
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3D Supporting Area Due to noises on RGB-D data, the features (descrip-
tors) of a single point is usually unstable. To deal with noises, we assume local
rigidity for each point, and aggregate cost values of local neighboring points on
the same surface for a robust matching cost. Unlike [10], 3D geodesic distance
is a better choice to judge whether 3D neighboring points are on a same surface
than Euclidean distance. However, it is expensive to compute geodesic distance
between all the points. We propose a new 3D patch representation as an approx-
imation by using the normal information nP, which is capable of selecting such
neighboring points on the same surface for a point. Our basic observation is that
if Q is a neighboring point of P and they are on a same surface, the value of
(P−Q) · nP should close to 0.

Given the 3D world coordinates of a point P = {XP, YP, ZP}. Thus, the
supporting patch of a 3D point P can be expressed as the set of the neighboring
points satisfying

S(P) = {Q
∣∣ ||P−Q||2 < ε · ZP ∧ (P−Q) · nP < δ · ZP} (7)

where ε is a threshold ratio using in the previous normal estimation, and δ is
usually a small threshold ratio decided by the sensor noise.

Weighting Function In the supporting area of a point P, its neighboring
points Q ∈ S(P) should have higher probability if they are closer in the 3D
space. Thus, we utilize an adaptive weight ω(P,Q) based on Euclidean distance
to aggregate the cost values of neighboring points Q in the support area S(P).
The weighting function is

ω(P,Q) = exp(−||P−Q||2/γ). (8)

where γ is a parameter to control the weight function.

Reliability Map Considering the fact that the depth channel of RGB-D da-
ta often contains missing data and noises, we introduce reliability of each pixel
(point) in the RGB-D data. We observe that depth noise often occur predom-
inantly near depth discontinuities. Therefore we apply an edge detector on the
depth map, and use the 2D spatial distance ρp to the closest depth edge as a
reliability measure for p. The reliability of p is

R(p) =

{
exp(− 2·min(ρmax−ρp,0)

ρmax
) if D(p) is valid

0 otherwise
(9)

where ρmax are constant scaling parameters.

Point-based Matching Cost Given a point in P in the reference image and
a 6-DoF motion VP, the motion is of high probability for this point if we can
find a position with similar appearance and geometrical information in the target
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image. We assume brightness constancy and use color difference ||I(p)−I ′(p′)||2
to measure appearance similarity. For geometrical similarity, we use difference
of depth values ||ZP′ −D′(p′)||2 as an approximation of 3D Euclidean distance.
The matching cost of one single point P with motion VP = {RP,TP} is defined
as

C(P,VP) = ||I(p)− I ′(p′)||2 + α · ||ZP′ −D′(p′)||2. (10)

where α is the parameter to control the ratio of the two components.

3D Searching We modify the 2D PatchMatch method for our 3D scene flow
case, due to its good characteristic to handle large displacement. Firstly, each
point is assigned with the initial value provided by the local optical flow method.
Next, we iteratively carry out two steps to refine the motion estimates for each
point, i.e. spatial propagation and random search. In the spatial propagation,
we use 6-DoF completed scene flow instead of 2-DoF translational optical flow.
In the random search, the searching dimension is too large to efficiently obtain
good results. We introduce a reduced-DoF random search by only generating a
random 2-DoF translation tp. We compute the 2D principal direction vectors of
p in the reference image and p+tp in the target image by adopting the prominent
orientations in SIFT feature detection [19]. Then, the following computation is
similar with the situation when we convert 2D motion field to 3D completed
scene flow in the section Initialization from Optical flow. We can finally acquire
a 6-DoF motion from a 2-DoF random guess using this reduced-DoF random
search. Thus, the dimension of random searching for 3D scene flow case is then
significantly reduced from six to two.

3.3 Estimation using Global Method

In spite of feature consistency assumption in the local method, we can further
explicitly model the occlusion and enforce 3D smoothness in the global approach.
The energy function of the global scene flow is

Eglobal(V) =
∑
P

Cglobal(P,VP) + λ
∑
P,Q

Sglobal(P,Q,VP,VQ) (11)

where Q ∈ S(P) ∩ N(P), S(P) is the set of points in the supporting patch
of P, and N(P) is the set of 4(8) connected neighboring points on the image
plane, Cglobal(P,VP) is used for feature consistency, and Sglobal(P,Q,VP,VQ)
promotes the 3D smoothness of the motion field. Note that Cglobal is different
from Clocal by further modeling occlusion.

Robust Matching Cost with Occlusion Modeling To address the occlusion
issue, we incorporate the occlusion in our matching cost computation. We deem
the occluded points as outliers when finding correspondence, and use a constant
cost value for matching outliers. The robust matching cost in the global method
is

Cglobal(P,VP) = (1−O(P)) · Clocal(P,VP) +O(P) · ξ (12)
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where ξ is set to be a minimal value for matching outliers, and O(P) is the
occlusion status of the point P.

Points in the target image are occluded if there exist other points in front
of them from the camera view. Previous methods [5, 10] usually estimate the
motion without considering occlusion first, then use consistency check to detec-
t occlusion, and refine the motion in occluded region as a postprocessing. This
may introduce error if the estimated motion is incorrect. Our method can explic-
itly model the occlusion using the depth order, since occlusion relationship has
been directly reflected in depth values. For robust performance, we also consider
depth noises in the occlusion modeling. We assume the depth noises following a
Gaussian distribution with mean zero and standard derivation σ. The occlusion
status of a point is defined as

O(P) = [ZP′ > D(P′) + 3 · σ(p)], (13)

where [·] is the Iverson bracket which denotes a number that is 1 if the condition
in square brackets is satisfied, and 0 otherwise, the computation of σ(p) is given
in the experiment section.

3D Smoothness Instead of enforcing smoothness only on the translation vec-
tors, we apply a 3D smoothness considering both translation and rotation. The
basic idea is to promote one point to have similar 3D positions after applying
the motion of itself or its neighbors. Thus, the smoothness term is the energy
function can be expressed as

Sglobal(P,Q,VP,VQ) = ω(P,Q) ·
(
||VP(P)−VQ(P)||22 + ||VP(Q)−VQ(Q)||22

)
(14)

where Q ∈ S(P) ∩ N(P), S(P) is the set of points in the supporting patch of
P, and N(P) is the set of 4 connected neighboring points on the image plane,
||VP(P)−VQ(P)||2 is the Euclidean distance of the point P with motion pat-
terns VP and VQ, and ||VP(Q) − VQ(Q)||2 is the Euclidean distance of the
point Q with motion patterns VP and VQ .

Optimization Given Eq. 12 and 14, we minimize our energy function in E-
q. 11 via the FusionMoves [20] method using QPBO [21]. The FusionMoves can
efficiently combine two proposal labelings (candidates) in a theoretically sound
way, which is in practice often globally optima. The key of achieving good results
is to generate high-quality motion proposals for FusionMoves. One direct way
is to use existing motion pattern directly from the result of our local method.
However, the number of different motion patterns in the local result of is usually
very limited. Thus, we not only include the motion patterns from the local re-
sult as proposals, but also add some random slight perturbation on them as new
proposals. The perturbation can be combinations of changing the translation by
jumping to its neighboring points (3 DoF), altering the rotation axis (2 DoF), or
modifying the rotation angle (1 DoF). The algorithm stops when energy change
in a period is less than a threshold, and outputs the final result.



Completed Dense Scene Flow in RGB-D Space 9

Methods
Venus Cones Teddy

RMSO RMSZ AAE RMSO RMSZ AAE RMSO RMSZ AAE

Brox2011 [9] 0.72 0.14 1.28 2.83 1.75 0.39 3.20 0.47 0.39

Xu2012 [22] 0.30 0.22 1.43 1.66 1.15 0.21 1.70 0.50 0.28

Huguet2007 [16] 0.31 N/A 0.98 1.10 N/A 0.69 1.25 N/A 0.51

Basa2013 [15] 0.16 N/A 1.58 0.58 N/A 0.39 0.57 N/A 1.01

Zhang2013 [5] 0.15 N/A 1.15 1.04 N/A 0.69 0.73 N/A 0.66

Quiroga2013 [4] 0.31 0.00 1.26 0.57 0.05 0.42 0.69 0.04 0.71

Hadfield2014 [1] 0.36 0.02 1.03 1.24 0.06 1.01 0.83 0.03 0.83

Hornáček2014 [10]0.26 0.02 0.53 0.54 0.02 0.52 0.35 0.01 0.15

NRDC [17] 5.65 N/A 16.2 15.5 N/A 18.3 17.7 N/A 14.3

Our local SF 3.35 0.27 14.5 7.91 1.29 7.10 11.4 0.30 10.9

Our global SF 0.15 0.00 1.17 0.33 0.00 0.39 0.40 0.00 0.50

Table 2. The evaluated errors of compared methods.

4 Experimental Results

To analyze the performance of the proposed method, we apply our algorithm
on the Middlebury dataset and some challenging RGB-D images captured by
Kinect cameras as a complement. We use millimeter as the unit of distance
measure, and [0, 255] for color range. For the local optical flow NRDC [17], we
use its default parameters. The threshold ratio ε for normal estimation is set
to 0.05, the threshold ratio δ for 3D supporting area is 0.02, the ratio α in cost
computation for a singe point is set to 1.0, the constant cost ξ for outliers is set to
30.0, the standard derivation of sensor noise σ(p) = k ·D(p)2, and the constant
used in computing the weight of two point γ = 10.0. For Middlebury dataset,
the ratio in the global optimization λ = 100, the parameters to model data
reliability ρmax = 2, and the parameters to model depth noise k = 1.5 × 10−4.
For Kinect RGB-D data, λ = 1, ρmax = 4 and k = 1.5× 10−5.

4.1 Middlebury Dataset

We accordingly test the method on Middlebury dataset following Huguet and
Devernay [16] in order to perform quantitative evaluation. The RGB-D images
are captured by a set of cameras which are parallel and equally spaced along
the X axis at the same time. The motion along Y and Z axis is always zero, and
the ground truth of motion along X axis can be obtained from corresponding
disparity, which is also available in the Middlebury dataset. We take the color
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Local optical flow NRDC Our local scene flow Our global scene flow Ground Truth

Fig. 3. 2D XY motion (optical flow) by projection of 3D displacements on image plane
using middlebury color coding. From left to right, these images are the results of
local optical flow, local scene flow and global scene flow in our motion estimation
framework along with the ground truth. From up to down, these images are the results
of Middlebury Cones, Teddy, and Venus. The optical flow maps are rendered using
middlebury coloring method. For scene flow, 3D displacements are projected to image
space to obtain 2D optical flow.

images and ground truth disparity maps of frames 2 and 6 of the Middlebury
Cones, Teddy, and Venus as the reference and target RGB-D images.

Our approach is compared with three optical flow methods [9, 22, 17], two
stereo-based scene flow methods [16, 15] and four RGB-D scene flow methods [5,
4, 1, 10]. Following [15, 16, 1], we use end point error (RMSO), disparity change
error (RMSZ) and average angular error (AAE) as the error measurement criteri-
a. Results were computed over all valid pixels. For stereo-based methods [16, 15],
they jointly estimate the scene flow and disparity using frames 2, 4, 6 and 8 of
the Middlebury Cones, Teddy, and Venus. For the two optical flow techniques [9,
22], RMSZ was computed by estimating 3D translational flow by interpolating
depth encoded at the start and end points given its 2D flow vector. The error
values are given as reported in their papers or computed using provided codes
with default parameters. From Table 2, our method is the top performer under
most evaluation criteria among all the optical flow and scene flow algorithms.

An interesting observation is that the local optical flow (NRDC) and local
scene flow employed in our framework perform worse than most competing meth-
ods while our global scene flow still can generate good-quality motion results.
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This is consistent with the qualitative results shown in Figure 3. The estimated
local optical flow by NRDC is quite false and noisy on the all the three RGB-D
images pairs. The local scene flow improves the motion quality in some region,
but the result is still incorrect especially on occlusion, textureless regions and
repeated patterns. Our global scene flow can capture the correct motion pat-
terns from the noisy input result of local scene flow, and overcome these issues
to generate accurate results.

4.2 Kinect RGB-D Data

We also apply our algorithm on two frames of the RGB-D video sequence Tshirt4
recorded by a Kinect camera from [23] and RGB-D data captured by us as a
complement. We compare the performance of our algorithm to a scene flow
method called RGB-D flow method [3], a 3D surface tracking method [23], a
large displacement optical flow method [9] based on RGB color images. For the
optical flow, the scene flow can be computed by back-projecting the 2D optical
flow to 3D space domain using camera intrinsic parameters and depth values.

Qualitative Evaluation We visualize the motion results from different meth-
ods in two strategies for qualitative evaluation. The first strategy is that we
create XY motion (Optical flow) map and Z motion map to show the motion
projection on 2D image plane and the motion along depth Z direction respec-
tively. These maps are illustrated based on middlebury color coding [12]. To
visualize Z motion map, the values along x-axis of middlebury color coding map
are employed. The second strategy is using the motion field to register the point
cloud of reference image to the point cloud of the target image. A good motion
estimation result should be able to register two point clouds to each other closely
and smoothly.

Figure 4 shows the results of estimating the 3D motion field between the
frame 58 and the frame 61 on the Tshirt4 sequence. As shown in the row 2
and 3, the RGB-flow method and the optical flow method fail in capturing the
distinct motion of the right side of T-shirt marked by the green circle due to
occlusion, the surface tracking method over-smooth the region, while our method
robustly estimates the 3D motion field. This difference reflects the advantages of
the completed scene flow parametrization and occlusion modeling employed by
our framework. Row 4-6 depicts the registration results from three orthographic
views. We can see that the other three methods fail in registering the reference
point clouds to target point clouds smoothly on the regions marked by green
circles, and our method works robustly on the deformable surfaces of T-shirt.
The registration results are consistent with the XY- and Z-motion maps.

Figure 5 gives the motion results of two RGB-D images of a person waving
his hands captured by us. The data is challenging since there is almost no texture
on the clothes worn on the person. As shown in the row 2 and 3, other methods
fail in estimating the motion field on the region marked by the green circle. In
contrast, our method still works robustly against these competing methods.
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Fig. 4. Scene flow on two frames on Tshirt4 sequence. Row 1: Input reference and target
RGB-D images. For clarity, we only show the depth values of the foreground. Row 2-
3: XY-motion (optical flow) maps and Z-motion maps of the RGB-D flow, surface
tracking, optical flow and our methods. Left images are extended Middlebury color
coding maps for 3D motion visualization. Row 4-6: Three basic orthographic views of
the two point clouds from reference and target data before and after registration using
3D motion field generated by different methods.
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Fig. 5. 3D motion estimation on two RGB-D images captured by us. Row 1: Input
reference and target RGB-D images. For clarity, we only show the depth values of the
foreground. Row 2-3: XY-motion maps and Z-motion maps of the RGB-D flow, surface
tracking, optical flow and our methods. Left images are extended Middlebury color
coding maps for 3D motion visualization.

Quantitative Evaluation It is prohibitively expensive to label correspon-
dences for every point in the two RGB-D sequences. Instead, we use a sparse
set of hand-tracked points, approximately uniformly spaced in the first frame of
each sequence. The position displacement of these points are served as ground
truth to measure accuracy and robustness of the estimated motion results.

We evaluate the four methods on the two sequence under different two time
intervals configuration of neighboring frames: ∆t = 1 and ∆t = 3. The mo-
tion displacement in the time interval configuration ∆t = 3 is approximately
3 times larger than ∆t = 1. Thus, we can discriminate between two time in-
terval configuration by considering them as small displacement (∆t = 1) and
large displacement (∆t = 3) scenarios, respectively. Table. 3 depicts mean and
standard deviation of error (3D Euclidean distance from the ground truth) with
small and large displacement scenarios in Tshirt4 and Human Hand Waving
sequences. From the table, we can observe that our method achieve comparative
results compared with other three state-of-art methods in small displacement
scenario. When it turns to the situation that there exists large displacement 3D
motion in the scene, our method performs much better and reaches the lowest
mean and standard deviation of error. This proves the ability of the proposed
method in dealing with large displacement 3D motion estimation.



14 Authors Suppressed Due to Excessive Length

Methods
Tshirt4 Human Hand Waving

∆t = 1 ∆t = 3 ∆t = 1 ∆t = 3
mean std. mean std. mean std. mean std.

RGB-D flow [3] 3.5 2.0 18.8 56.4 6.6 3.9 11.3 14.9

Surface tracking [23] 7.4 4.2 71.9 128.8 11.0 15.1 39.0 129.0

Optical flow [9] 7.1 4.7 23.8 71.1 6.7 5.1 35.9 129.7

Our method 2.8 1.8 8.9 4.2 5.9 4.2 7.7 10.4

Table 3. The mean and standard deviation of error (mm) with small and large
displacement in Tshirt4 and Human Hand Waving sequences.

5 Conclusions

In this paper, we present a framework to address the challenging problems of
scene flow estimation based on RGB-D data. In the framework, we efficiently
initialize scene flow from a 2D motion method to address the large displacement
motion problem, and then refine it using a local method to provide candidates,
and fuse these motion candidates by considering occlusion and smoothness. In
the local method, we propose calculate the matching cost using a 3D supporting
area using adaptive weights which is robust to noise. In the global method,
we explicitly model occlusion to jointly estimate occlusion and scene flow to
address the occlusion problem. For the noise and missing data issues, RGB-
D data reliability is also taken into account in the formulation. We showed
compelling results on the Middlebury datasets as well as on challenging Kinect
RGB-D data.
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