Abstract
Face identification (FI) has made significant amount of progress in the last three decades. Its application is now moving towards wearable devices (like Google Glass and mobile devices) leading to the problem of FI on first-person-views (FPV) or ego-centric videos for scenarios like business networking, memory assistance, etc. In the existing literature, performance analysis of various image descriptors on FPV data are little known. In this paper, we evaluate four popular image descriptors: local binary patterns (LBP), scale invariant feature transform (SIFT), local phase quantization (LPQ) and binarized statistical image features (BSIF) and ten different distance measures: Euclidean, Cosine, Chi square, Spearman, Cityblock, Minkowski, Correlation, Hamming, Jaccard and Chebychev with first nearest neighbor (1-NN) and support vector machines (SVM) as classifiers for FI task on both benchmark databases: FERET, AR, GT and FPV database collected using wearable devices like Google Glass (GG). Comparative analysis on these databases using various descriptors shows the superiority of BSIF with Cosine, Chi square and Cityblock distance measures using 1-NN as classifier over other descriptors and distance measures and even some of the current state-of-art benchmark database results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A test was performed with LBP and the Chi square distance measure with a different filter size and 1-NN as classifier, producing a classification accuracy of 60 %. The difference of 10 % (in Table 1) showcases the significance of fine-tuning the parameters in LBP. However, in this work, we are not focusing on fine tuning the parameters for LBP, but use same default parameters for all the experiments. This is also same for all other descriptors including SIFT, LPQ and BSIF.
References
GoPro (2014). http://gopro.com/
Google: Google glass (2014). http://www.google.com/glass/start/
Mandal, B., Eng., H.L.: 3-parameter based eigenfeature regularization for human activity recognition. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 954–957 (2010)
TedBlog: The future of facial recognition: 7 fascinating facts. http://blog.ted.com/2013/10/17/the-future-of-facial-recognition-7-fascinating-facts/ 2014
Mandal, B., Eng, H.L.: Regularized discriminant analysis for holistic human activity recognition. IEEE Intell. Syst. 27, 21–31 (2012)
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35, 399–458 (2003)
Phillips, P.J.: Face & ocular challenges (2010). Presentation: http://www.cse.nd.edu/BTAS_10/BTAS_Jonathon_Phillips_Sep_2010_FINAL.pdf
Grother, P., Ngan, M.: Face recognition vendor test (frvt) performance of face identification algorithms (2014). Technical Report: http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf
Mandal, B., Jiang, X.D., Kot, A.: Multi-scale feature extraction for face recognition. In: IEEE International Conference on Industrial Electronics and Applications (ICIEA), pp. 1–6 (2006)
Wang, X., Zhao, X., Prakash, V., Shi, W., Gnawali, O.: Computerized-eyewear based face recognition system for improving social lives of prosopagnosics. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, pp. 77–80 (2013)
Mandal, B., Ching, S., Li, L., Chandrasekha, V., Tan, C., Lim, J.H.: A wearable face recognition system on google glass for assisting social interactions. In: 3rd International Workshop on Intelligent Mobile and Egocentric Vision, ACCV (2014)
Utsumi, Y., Kato, Y., Kunze, K., Iwamura, M., Kise, K.: Who are you?: A wearable face recognition system to support human memory. In: ACM Proceedings of the 4th Augmented Human International Conference, pp. 150–153 (2013)
Krishna, S., Little, G., Black, J., Panchanathan, S.: A wearable face recognition system for individuals with visual impairments. In: ACM SIGACCESS Conference on Computer and Accessbility, pp. 106–113 (2005)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)
Swets, D.L., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE PAMI 18, 831–836 (1996)
Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recogn. 33, 1771–1782 (2000)
Singletary, B.A., Starner, T.E.: Symbiotic interfaces for wearable face recognition. In: HCII2001 Workshop On Wearable Computing (2001)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE PAMI 27, 1615–1630 (2005)
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE PAMI 28, 2037–2041 (2006)
Aly, M.: Face recognition using sift features. CNS/Bi/EE report 186 (2006)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008)
Kannala, J., Rahtu, E.: Bsif: Binarized statistical image features. In: ICPR, pp. 1363–1366 (2012)
Perlibakas, V.: Distance measures for pca-based face recognition. Pattern Recogn. Lett. 25, 711–724 (2004)
Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification (2010)
Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.: The feret evaluation methodology for face recognition algorithms. IEEE PAMI 22, 1090–1104 (2000)
Martinez, A.M.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE PAMI 24, 748–763 (2002)
Nefian, A.V.: Georgia tech face database (2014). http://www.anefian.com/research/face_reco.htm
Mandal, B., Ching, S., Li, L.: Werable device database (2014). https://sites.google.com/site/bappadityamandal/human-detection-and-fr
Beveridge, R., Bolme, D., Teixeira, M., Draper, B.: The csu face identification evaluation system users guide: Version 5.0 (2013). Technical Report: http://www.cs.colostate.edu/evalfacerec/data/normalization.html
Jiang, X.D., Mandal, B., Kot, A.: Eigenfeature regularization and extraction in face recognition. IEEE PAMI 30, 383–394 (2008)
Jiang, X.D., Mandal, B., Kot, A.: Face recognition based on discriminant evaluation in the whole space. In: IEEE 32nd International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), Honolulu, Hawaii, USA, pp. 245–248 (2007)
Mandal, B., Jiang, X., Eng, H.L., Kot, A.: Prediction of eigenvalues and regularization of eigenfeatures for human face verification. Pattern Recogn. Lett. 31, 717–724 (2010)
Mandal, B., Jiang, X.D., Kot, A.: Dimensionality reduction in subspace face recognition. In: IEEE ICICS, pp. 1–5 (2007)
VLFEAT: Vlfeat open source (2014). http://www.vlfeat.org/overview/sift.html#tut.sift.param
Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N., Li, S.Z.: Ensemble-based discriminant learning with boosting for face recognition. IEEE TNN 17, 166–178 (2006)
Jiang, X.D., Mandal, B., Kot, A.: Complete discriminant evaluation and feature extraction in kernel space for face recognition. Mach. Vis. Appl. 20, 35–46 (2009). (Springer)
Park, B.G., Lee, K.M., Lee, S.U.: Face recognition using face-arg matching. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1982–1988 (2005)
Geng, C., Jiang, X.: Fully automatic face recognition framework based on local and global features. Mach. Vis. Appl. 24, 537–549 (2013)
Mandal, B., Jiang, X.D., Kot, A.: Verification of human faces using predicted eigenvalues. In: 19th International Conference on Pattern Recognition (ICPR), Tempa, Florida, USA (2008)
Viola, P., Jones, M.: Robust real-time face detection. IJCV 57, 137–154 (2004)
Yu, X., Han, W., Li, L., Shi, J.Y., Wang, G.: An eye detection and localization system for natural human and robot interaction without face detection. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 54–65. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mandal, B., Zhikai, W., Li, L., Kassim, A.A. (2015). Evaluation of Descriptors and Distance Measures on Benchmarks and First-Person-View Videos for Face Identification. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9008. Springer, Cham. https://doi.org/10.1007/978-3-319-16628-5_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-16628-5_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16627-8
Online ISBN: 978-3-319-16628-5
eBook Packages: Computer ScienceComputer Science (R0)