Skip to main content

A Two-Step Image Inpainting Algorithm Using Tensor SVD

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9009))

Included in the following conference series:

  • 2079 Accesses

Abstract

In this paper, we present a novel exemplar-based image inpainting algorithm using the higher order singular value decomposition (HOSVD). The proposed method performs inpainting of the target image in two steps. At the first step, the target region is inpainted using HOSVD-based filtering of the candidate patches selected from the source region. It helps to propagate the structure and color smoothly in the target region and restrict to appear unwanted artifacts. But a smoothing effect may be visible in the texture regions due to the filtering. In the second step, we recover the texture by an efficient heuristic approach using the already inpainted image. The experimental results show the superiority of the proposed method compared to the state of the art methods.

This work is partially supported by Department of Science and Technology, Government of India (NRDMS/11/1586/09/Phase-I/Project No. 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertalmio, M., Sapiro, G.: Image inpainting. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, New York, USA, pp. 417–424 (2000)

    Google Scholar 

  2. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based inpainting. IEEE Trans. Image Process. 13, 1200–1212 (2004)

    Article  Google Scholar 

  3. Chan, T., Shen, J.: Non-texture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12, 436–449 (2001)

    Article  Google Scholar 

  4. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 1033–1038 (1999)

    Google Scholar 

  5. Fadili, M.J., Starck, J.L., Murtagh, F.: Inpainting and zooming using sparse representations. Comput. J. 52, 64–79 (2009)

    Article  Google Scholar 

  6. Shen, B., Hu, W., Zhang, Y., Zhang, Y.: Image inpainting via sparse representation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 697–700 (2009)

    Google Scholar 

  7. Xu, Z., Sun, J.: Image inpainting by patch propagation using patch sparsity. IEEE Trans. Image Process. 19, 1153–1165 (2010)

    Article  MathSciNet  Google Scholar 

  8. Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans. Image Process. 16, 2649–2661 (2007)

    Article  MathSciNet  Google Scholar 

  9. Liu, Y., Caselles, V.: Exemplar-based image inpainting using multiscale graph cuts. IEEE Trans. Image Process. 22, 1699–1711 (2013)

    Article  MathSciNet  Google Scholar 

  10. Le Meur, O., Guillemot, C.: Super-resolution-based inpainting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 554–567. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Meur, O.L., Ebdelli, M., Guillemot, C.: Heigherchical super-resolution-based inpainting. IEEE Trans. Image Process. 22, 3779–3790 (2013)

    Article  MathSciNet  Google Scholar 

  12. Constantini, R., Sbaiz, L., Susstrunk, S.: Higher order SVD analysis for dynamic texture synthesis. IEEE Trans. Image Process. 17, 42–52 (2008)

    Article  MathSciNet  Google Scholar 

  13. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 849–862 (2013)

    Article  Google Scholar 

  14. Bugeau, A., Bertalmio, M., Caselles, V.: A comprehensive framework for image inpainting. IEEE Trans. Image Process. 19, 2634–2645 (2010)

    Article  MathSciNet  Google Scholar 

  15. Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. IEEE Trans. Pattern Anal. Mach. Intell. 29, 463–476 (2007)

    Article  Google Scholar 

  16. Lathauwer, L.D.: Signal processing based on multilinear algebre. Ph.D. dissertation, Katholieke Universiteit Leuven, April 2013

    Google Scholar 

  17. Yedidia, J., Freeman, W., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theor. 51, 2282–2312 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Aharon, M., Elad, M., Bruckstein, A.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE. Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  19. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  20. Pritch, Y., Kav-Venaki, E., Peleg, S.: Shift-map image editing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 151–158, September 2009

    Google Scholar 

  21. He, K., Sun, J.: Statistics of patch offsets for image completion. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 16–29. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Ghorai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 26,517 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghorai, M., Mandal, S., Chanda, B. (2015). A Two-Step Image Inpainting Algorithm Using Tensor SVD. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16631-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16630-8

  • Online ISBN: 978-3-319-16631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics