Skip to main content

Metric Tensor and Christoffel Symbols Based 3D Object Categorization

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

  • 1415 Accesses

Abstract

In this paper we propose to address the problem of 3D object categorization. We model 3D object as a piecewise smooth Riemannian manifold and propose metric tensor and Christoffel symbols as a novel set of features. The proposed set of features captures the local and global geometry of 3D objects by exploiting the uniqueness and compatibility of the features. The metric tensor represents a geometrical signature of the 3D object in a Riemannian manifold. To capture global geometry we propose to use combination of metric tensor and Christoffel symbols, as Christoffel symbols measure the deviations in the metric tensor. The categorization of 3D objects is carried out using polynomial kernel SVM classifier. The effectiveness of the proposed framework is demonstrated on 3D objects obtained from different datasets and achieved comparable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer Universitat Texts. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  2. Kumaresan, S.: A Course in Differential Geometry and Lie Groups. Texts and Readings in Mathematics. Hindustan Book Agency, New Delhi (2002)

    MATH  Google Scholar 

  3. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  4. Misner, C., Thorne, K., Wheeler, J.: Gravitation. W.H. Freeman and Company, San Francisco (1973)

    Google Scholar 

  5. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)

    Article  Google Scholar 

  6. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Papageorgiou, C., Poggio, T.: A trainable system for object detection. Int. J. Comput. Vision 38, 15–33 (2000)

    Article  MATH  Google Scholar 

  8. Schneiderman, H.: A statistical approach to 3D object detection applied to faces and cars. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2000)

    Google Scholar 

  9. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR (1), pp. 511–518 (2001)

    Google Scholar 

  10. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 1848–1853. IEEE Press, Piscataway (2009)

    Google Scholar 

  11. Rusu, R.B., Bradski, G.R., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: IROS, pp. 2155–2162. IEEE (2010)

    Google Scholar 

  12. Cyr, C.M., Kimia, B.B.: 3d object recognition using shape similarity-based aspect graph. In: ICCV, 254–261 (2001)

    Google Scholar 

  13. Golovinskiy, A., Kim, V.G., Funkhouser, T.A.: Shape-based recognition of 3d point clouds in urban environments. In: ICCV, pp. 2154–2161. IEEE (2009)

    Google Scholar 

  14. Madry, M., Ek, C.H., Detry, R., Hang, K., Kragic, D.: Improving generalization for 3d object categorization with global structure histograms. In: IROS, pp.1379–1386. IEEE (2012)

    Google Scholar 

  15. Savarese, S., Li, F.F.: 3d generic object categorization, localization and pose estimation. In: ICCV, pp. 1–8. IEEE (2007)

    Google Scholar 

  16. Savarese, S., Li, F.F.: Multi-view object categorization and pose estimation. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Computer Vision. SCI, vol. 285, pp. 205–231. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Savarese, S., Li, F.-F.: View synthesis for recognizing unseen poses of object classes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 602–615. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Toldo, R., Castellani, U., Fusiello, A.: A bag of words approach for 3D object categorization. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2009. LNCS, vol. 5496, pp. 116–127. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  20. Lpez-Sastre, R.J., Garca-Fuertes, A., Redondo-Cabrera, C., Acevedo-Rodrguez, F.J., Maldonado-Bascn, S.: Evaluating 3d spatial pyramids for classifying 3d shapes. Comput. Graph. 37, 473–483 (2013)

    Article  Google Scholar 

  21. Pinz, A.: Object categorization. Found. Trends. Comput. Graph. Vis. 1, 255–353 (2005)

    Article  Google Scholar 

  22. Mueller, C.A.: 3D object shape categorization in domestic environments. Technical report, Bonn-Rhein-Sieg University, Sankt Augustin, Germany, February 2012

    Google Scholar 

  23. Biasotti, S., Bai, X., Bustos, B., Cerri, A., Giorgi, D., Li, L., Mortara, M., Sipiran, I., Zhang, S., Spagnuolo, M.: In: Spagnuolo, M., Bronstein, M.M., Bronstein, A.M., Ferreira, A. (eds.) 3DOR (Eurographics Association) pp. 101–107

    Google Scholar 

  24. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the Shape Modeling International, SMI 2004, pp. 167–178. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  25. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (3DIM) (2001)

    Google Scholar 

  26. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  27. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Altaf Ganihar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ganihar, S.A., Joshi, S., Setty, S., Mudenagudi, U. (2015). Metric Tensor and Christoffel Symbols Based 3D Object Categorization. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics