Skip to main content

A Wearable Face Recognition System on Google Glass for Assisting Social Interactions

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

Abstract

In this paper, we present a wearable face recognition (FR) system on Google Glass (GG) to assist users in social interactions. FR is the first step towards face-to-face social interactions. We propose a wearable system on GG, which acts as a social interaction assistant, the application includes face detection, eye localization, face recognition and a user interface for personal information display. To be useful in natural social interaction scenarios, the system should be robust to changes in face pose, scale and lighting conditions. OpenCV face detection is implemented in GG. We exploit both OpenCV and ISG (Integration of Sketch and Graph patterns) eye detectors to locate a pair of eyes on the face, between them the former is stable for frontal view faces and the latter performs better for oblique view faces. We extend the eigenfeature regularization and extraction (ERE) face recognition approach by introducing subclass discriminant analysis (SDA) to perform within-subclass discriminant analysis for face feature extraction. The new approach improves the accuracy of FR over varying face pose, expression and lighting conditions. A simple user interface (UI) is designed to present relevant personal information of the recognized person to assist in the social interaction. A standalone independent system on GG and a Client-Server (CS) system via Bluetooth to connect GG with a smart phone are implemented, for different levels of privacy protection. The performance on database created using GG is evaluated and comparisons with baseline approaches are performed. Numerous experimental studies show that our proposed system on GG can perform better real-time FR as compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krishna, S., Little, G., Black, J., Panchanathan, S.: A wearable face recognition system for individuals with visual impairments. In: ACM SIGACCESS Conference on Computer and Accessbility, pp. 106–113 (2005)

    Google Scholar 

  2. Utsumi, Y., Kato, Y., Kunze, K., Iwamura, M., Kise, K.: Who are you?: a wearable face recognition system to support human memory. In: ACM Proceedings of the 4th Augmented Human International Conference, pp. 150–153 (2013)

    Google Scholar 

  3. Singletary, B.A., Starner, T.E.: Symbiotic interfaces for wearable face recognition. In: In HCII2001 Workshop on Wearable Computing (2001)

    Google Scholar 

  4. H.F., E., Haan, D., Campbell, R.: A fifteen year follow-up of a case of developmental prosopagnosia. Cortex, a Journal Devoted to the Study of the Nervous System and Behaviour 27 (1991) 489–509

    Google Scholar 

  5. Bate, S.: Face recognition and its disorders. Palgrave Macmillan, New York (2013)

    Google Scholar 

  6. Kennerknecht, I., Grueter, T., Welling, B., Wentzek, S., Horst, J., Edwards, S., Grueter, M.: First report of prevalence of non-syndromic hereditary prosopagnosia (hpa). Am. J. Med. Genet. 140, 1617–1622 (2006)

    Article  Google Scholar 

  7. Grter, T., Grter, M., Carbon, C.: Neural and genetic foundations of face recognition and prosopagnosia. J. Neuropsychol. 2, 79–97 (2008)

    Article  Google Scholar 

  8. Wang, X., Zhao, X., Prakash, V., Shi, W., Gnawali, O.: Computerized-eyewear based face recognition system for improving social lives of prosopagnosics. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, pp. 77–80 (2013)

    Google Scholar 

  9. Nametag (2014). http://www.nametag.ws/

  10. OpenCV: Open source computer vision (2014). http://opencv.org/

  11. Yu, X., Han, W., Li, L., Shi, J.Y., Wang, G.: An eye detection and localization system for natural human and robot interaction without face detection. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 54–65. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Mandal, B., Jiang, X., Eng, H.L., Kot, A.: Prediction of eigenvalues and regularization of eigenfeatures for human face verification. Pattern Recogn. Lett. 31, 717–724 (2010)

    Article  Google Scholar 

  13. Jiang, X.D., Mandal, B., Kot, A.: Face recognition based on discriminant evaluation in the whole space. In: IEEE 32nd International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), pp. 245–248. Honolulu, Hawaii, USA (2007)

    Google Scholar 

  14. Zhu, M., Martinez, A.: Subclass discriminant analysis. IEEE PAMI 28, 1274–1286 (2006)

    Article  Google Scholar 

  15. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35, 399–458 (2003)

    Article  Google Scholar 

  16. Phillips, P.J.: Face & ocular challenges. Presentation: http://www.cse.nd.edu/BTAS_10/BTAS_Jonathon_Phillips_Sep_2010_FINAL.pdf (2010)

  17. Rowden, L., Klare, B., Klontz, J., Jain, A.K.: Video-to-video face matching: establishing a baseline for unconstrained face recognition. In: IEEE BTAS (2013)

    Google Scholar 

  18. Jiang, X.D., Mandal, B., Kot, A.: Complete discriminant evaluation and feature extraction in kernel space for face recognition. Mach. Vis. Appl. 20, 35–46 (2009). Springer

    Article  Google Scholar 

  19. Grother, P., Ngan, M.: Face recognition vendor test (frvt) performance of face identification algorithms. Technical report (2014). http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf

  20. Beveridge, R., Bolme, D., Teixeira, M., Draper, B.: The csu face identification evaluation system user’s guide: version 5.0. Technical report (2013). http://www.cs.colostate.edu/evalfacerec/data/normalization.html

  21. Viola, P., Jones, M.: Robust real-time face detection. IJCV 57, 137–154 (2004)

    Article  Google Scholar 

  22. Jiang, X.D., Mandal, B., Kot, A.: Eigenfeature regularization and extraction in face recognition. IEEE PAMI 30, 383–394 (2008)

    Article  Google Scholar 

  23. Mandal, B., Jiang, X.D., Kot, A.: Dimensionality reduction in subspace face recognition. In: IEEE ICICS, pp. 1–5 (2007)

    Google Scholar 

  24. Liu, W., Wang, Y., Li, S.Z., Tan, T.N.: Null space approach of fisher discriminant analysis for face recognition. In: ECCV, pp. 32–44 (2004)

    Google Scholar 

  25. Liu, W., Wang, Y.W., Li, S.Z., Tan, T.N.: Null space-based kernel fisher discriminant analysis for face recognition. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 369–374 (2004)

    Google Scholar 

  26. Mandal, B., Jiang, X.D., Kot, A.: Multi-scale feature extraction for face recognition. In: IEEE International Conference on Industrial Electronics and Applications (ICIEA), pp. 1–6 (2006)

    Google Scholar 

  27. Mandal, B., Jiang, X.D., Kot, A.: Verification of human faces using predicted eigenvalues. In: 19th International Conference on Pattern Recognition (ICPR), pp. 1–4. Tempa, Florida, USA (2008)

    Google Scholar 

  28. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  29. Swets, D.L., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE PAMI 18, 831–836 (1996)

    Article  Google Scholar 

  30. Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recognit. 33, 1771–1782 (2000)

    Article  Google Scholar 

  31. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE PAMI 19, 696–710 (1997)

    Article  Google Scholar 

  32. Wang, X., Tang, X.: A unified framework for subspace face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1222–1228 (2004)

    Article  Google Scholar 

  33. Chen, L.F., Liao, H.Y.M., Ko, M.T., Lin, J.C., Yu, G.J.: A new lda-based face recognition system which can solve the small sample size problem. Pattern Recognit. 33, 1713–1726 (2000)

    Article  Google Scholar 

  34. Mandal, B., Eng, H.L.: Regularized discriminant analysis for holistic human activity recognition. IEEE Intell. Syst. 27, 21–31 (2012)

    Article  Google Scholar 

  35. Mandal, B., Eng., H.L.: 3-parameter based eigenfeature regularization for human activity recognition. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 954–957 (2010)

    Google Scholar 

  36. Mandal, B., Zhikai, W., Li, L., Kassim, A.: Evaluation of descriptors and distance measures on benchmarks and first-person-view videos for face identification. In: International Workshop on Robust Local Descriptors for Computer Vision, ACCV (2014)

    Google Scholar 

  37. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained video with matched background similarity. In: IEEE CVPR, pp. 529–534 (2011)

    Google Scholar 

  38. Hastie, T., Tibshirani, R.: Discriminant analysis by gaussian mixtures. J. Roy. Stat. Soc. Ser. B 58, 155–176 (1996)

    MATH  MathSciNet  Google Scholar 

  39. Gkalelis, N., Mezaris, V., Kompatsiaris, I.: Mixture subclass discriminant analysis. IEEE Signal Process. Lett. 18, 319–322 (2011)

    Article  Google Scholar 

  40. Mandal, B., Ching, S., Li, L.: Werable device database (2014). https://drive.google.com/folderview?id=0B2veiY3G5XZxVkd3eC1SdEROaGM&usp=sharing

  41. Google: Google glass (2014). http://www.google.com/glass/start/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bappaditya Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mandal, B., Chia, SC., Li, L., Chandrasekhar, V., Tan, C., Lim, JH. (2015). A Wearable Face Recognition System on Google Glass for Assisting Social Interactions. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics