Abstract
Face recognition (FR) via sparse representation has been widely studied in the past several years. Recently many sparse representation based face recognition methods with simultaneous misalignment were proposed and showed interesting results. In this paper, we present a novel method called structure constraint coding (SCC) for face recognition with image misalignment. Unlike those sparse representation based methods, our method does image alignment and image representation via structure constraint based regression simultaneously. Here, we use the nuclear norm as a structure constraint criterion to characterize the error image. Compared with the sparse representation based methods, SCC is more robust for dealing with illumination variations and structural noise (especially block occlusion). Experimental results on public face databases verify the effectiveness of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse re-presentation. IEEE PAMI 31, 210–227 (2009)
Elhamifar, E., Vidal, R.: Robust classification using structured sparse representation. In: CVPR (2011)
Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: CVPR (2011)
Zhou, Z., Wagner, A., Mobahi, H., Wright, J., Ma, Y.: Face recognition with contiguous occlusion using markov random fields. In: ICCV (2009)
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In: CVPR (2010)
Wu, Y., Shen, B., Ling, H.: Online robust image alignment via iterative convex optimization. In: CVPR (2012)
Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Mobahi, H., Ma, Y.: Towards a practical face recognition system: robust alignment and illumination by sparse representation. IEEE PAMI 34, 372–386 (2012)
Yang, M., Zhang, L., Zhang, D.: Efficient misalignment-robust representation for real-time face recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 850–863. Springer, Heidelberg (2012)
Yang, J., Zhang, L., Xu, Y., Yang, J.: Beyond sparsity: the role of l1-optimizer in pattern classification. Pattern Recogn. 45, 1104–1118 (2012)
Zhuang, L., Yang, A., Zhou, Z., Sastry, S., Ma, Y.: Single-sample face recognition with image corruption and misalignment via sparse illumination transfer. In: CVPR (2013)
Yang, J., Qian, J., Luo, L., Zhang, F., Gao, Y.: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes (2014). arXiv:1207.0023
Yang, M., Zhang, L., Yang, J., Zhang, D.: Regularized robust coding for face recognition. IEEE TIP 22, 1753–1766 (2013)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE PAMI 23, 643–660 (2001)
Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image Vis. Comput. 28, 807–813 (2010)
Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE PAMI 23, 681–685 (2001)
Cootes, T., Taylor, C.: Active shape models - smart snakes. In: BMVC (1992)
Huang, G., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images. In: ICCV (2007)
Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation which helps face recognition? In: ICCV (2011)
Lin, Z., et al.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices (2010). arXiv:1009.5055v2
Hansson, A., et al.: Subspace system identification via weighted nuclear norm optimization (2012). arXiv:1207.0023
Glowinski, R., Marroco, A.: Sur lapproximation, par elements finis dordre un, et la resolution, par penalisationdualite, dune classe de problemes de dirichlet non lineares. Revuew Francaise dAutomatique, Informatique et Recherche Operationelle 9, 41–76 (1975)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)
Cai, J., Cands, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)
Huang, G., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts (2007)
Huang, J., Huang, X., Metaxas, D.: Simultaneous image transformation and sparse representation recovery. In: CVPR (2008)
Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE PAMI 32, 2106–2112 (2010)
Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Tai, Y., Qian, J., Yang, J., Jin, Z. (2015). Face Recognition with Image Misalignment via Structure Constraint Coding. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-16634-6_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16633-9
Online ISBN: 978-3-319-16634-6
eBook Packages: Computer ScienceComputer Science (R0)