Skip to main content

Spatio-Temporal Consistency for Head Detection in High-Density Scenes

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

  • 1381 Accesses

Abstract

In this paper we address the problem of detecting reliably a subset of pedestrian targets (heads) in a high-density crowd exhibiting extreme clutter and homogeneity, with the purpose of obtaining tracking initializations. We investigate the solution provided by discriminative learning where we require that the detections in the image space be localized over most of the target area and temporally stable. The results of our tests show that discriminative learning strategies provide valuable cues about the target localization which may be combined with other complementary strategies in order to bootstrap tracking algorithms in these challenging environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferryman, J., Ellis, A.L.: Performance evaluation of crowd image analysis using the PETS2009 dataset. Pattern Recogn. Lett. 44, 3–15 (2014). Pattern Recognition and Crowd Analysis

    Article  Google Scholar 

  2. Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75, 046109 (2007)

    Article  Google Scholar 

  3. Krausz, B., Bauckhage, C.: Loveparade 2010: automatic video analysis of a crowd disaster. Comput. Vis. Image Underst. 116, 307–319 (2012)

    Article  Google Scholar 

  4. Zhan, B., Monekosso, D., Remagnino, P., Velastin, S., Xu, L.Q.: Crowd analysis: a survey. Mach. Vis. Appl. 19, 345–357 (2008)

    Article  MATH  Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - Volume 1, CVPR 2005, vol. 1, pp. 886–893. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  6. Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, Proceedings, vol. 2, pp. II-459–466 (2003)

    Google Scholar 

  7. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, vol. 2, pp. 406–413. IEEE (2004)

    Google Scholar 

  8. Comaniciu, D., Meer, P., Member, S.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  9. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: CVPR, pp. 878–885 (2005)

    Google Scholar 

  10. Rabaud, V., Belongie, S.: Counting crowded moving objects. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 705–711 (2006)

    Google Scholar 

  11. Li, M., Zhang, Z., Huang, K., Tan, T.: Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection. In: 19th International Conference on Pattern Recognition, 2008, ICPR 2008, pp. 1–4 (2008)

    Google Scholar 

  12. Li, M., Bao, S., Dong, W., Wang, Y., Su, Z.: Head-shoulder based gender recognition. In: 2013 20th IEEE International Conference on Image Processing (ICIP), pp. 2753–2756 (2013)

    Google Scholar 

  13. Ye, Q., Gu, R., Ji, Y.: Human detection based on motion object extraction and headshoulder feature. Optik - Int. J. Light Electron Opt. 124, 3880–3885 (2013)

    Article  Google Scholar 

  14. Wang, S., Zhang, J., Miao, Z.: A new edge feature for head-shoulder detection. In: 2013 20th IEEE International Conference on Image Processing (ICIP), pp. 2822–2826 (2013)

    Google Scholar 

  15. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007, CVPR 2007, pp. 1–6 (2007)

    Google Scholar 

  16. Ali, S., Shah, M.: Floor fields for tracking in high density crowd scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Moore, B.E., Ali, S., Mehran, R., Shah, M.: Visual crowd surveillance through a hydrodynamics lens. Commun. ACM 54, 64–73 (2011)

    Article  Google Scholar 

  18. Idrees, H., Warner, N., Shah, M.: Tracking in dense crowds using prominence and neighborhood motion concurrence. Image Vis. Comput. 32, 14–26 (2014)

    Article  Google Scholar 

  19. Aghajan, H., Cavallaro, A.: Multi-camera Networks: Principles and Applications. Academic Press, London (2009)

    Google Scholar 

  20. Javed, O., Shah, M.: Automated Multi-camera Surveillance: Algorithms and Practice. The International Series in Video Computing, vol. 10. Springer, New York (2008)

    Book  Google Scholar 

  21. Eshel, R., Moses, Y.: Tracking in a dense crowd using multiple cameras. Int. J. Comput. Vis. 88, 129–143 (2010)

    Article  Google Scholar 

  22. Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recogn. Lett. 34, 3–19 (2013)

    Article  Google Scholar 

  23. Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008, CVPR 2008, pp. 1–8(2008)

    Google Scholar 

  24. Lin, H.T., Lin, C.J., Weng, R.: A note on platts probabilistic outputs for support vector machines. Mach. Learn. 68, 267–276 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

K. Kiyani would like to acknowledge the Qatar QNRF under the grant NPRP 09-768-1-114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Aldea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aldea, E., Marastoni, D., Kiyani, K.H. (2015). Spatio-Temporal Consistency for Head Detection in High-Density Scenes. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics