Skip to main content

A Graphical Model for Rapid Obstacle Image-Map Estimation from Unmanned Surface Vehicles

  • Conference paper
  • First Online:
Book cover Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

Abstract

Obstacle detection plays an important role in unmanned surface vehicles (USV). Continuous detection from images taken onboard the vessel poses a particular challenge due to the diversity of the environment and the obstacle appearance. An obstacle may be a floating piece of wood, a scuba diver, a pier, or some other part of a shoreline. In this paper we tackle this problem by proposing a new graphical model that affords a fast and continuous obstacle image-map estimation from a single video stream captured onboard a USV. The model accounts for the semantic structure of marine environment as observed from USV by imposing weak structural constraints. A Markov random field framework is adopted and a highly efficient algorithm for simultaneous optimization of model parameters and segmentation mask estimation is derived. Our approach does not require computationally intensive extraction of texture features and runs faster than real-time. We also present a new, challenging, dataset for segmentation and obstacle detection in marine environments, which is the largest annotated dataset of its kind. Results on this dataset show that our model compares favorably in accuracy to the related approaches, requiring a fraction of computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For research purposes, we will provide the reference Matlab code of our approach, including the evaluation routines from the authors page.

References

  1. Heidarsson, H., Sukhatme, G.: Obstacle detection from overhead imagery using self-supervised learning for autonomous surface vehicles. In: International Conference on Intelligent Robots and Systems, pp. 3160–3165 (2011)

    Google Scholar 

  2. Rasmussen, C., Lu, Y., Kocamaz, M.K.: Trail following with omnidirectional vision. In: International Conference on Intelligent Robots and Systems, pp. 829–836 (2010)

    Google Scholar 

  3. Montemerlo, M., Thrun, S., Dahlkamp, H., Stavens, D.: Winning the darpa grand challenge with an ai robot. In: AAAI National Conference on Artificial Intelligence, pp. 17–20 (2006)

    Google Scholar 

  4. Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., Bradski, G.: Self-supervised monocular road detection in desert terrain. In: RSS, Philadelphia, USA (2006)

    Google Scholar 

  5. Ettinger, S.M., Nechyba, M.C., Ifju, P.G., Waszak, M.: Vision-guided flight stability and control for micro air vehicles. Adv. Rob. 17, 617–640 (2003)

    Article  Google Scholar 

  6. Lu, Y., Rasmussen, C.: Simplified markov random fields for efficient semantic labeling of 3D point clouds. In: IROS, pp. 2690–2697 (2012)

    Google Scholar 

  7. Scherer, S., Rehder, J., Achar, S., Cover, H., Chambers, A., Nuske, S., Singh, S.: River mapping from a flying robot: state estimation, river detection, and obstacle mapping. Auton. Rob. 33, 189–214 (2012)

    Article  Google Scholar 

  8. Onunka, C., Bright, G.: Autonomous marine craft navigation: on the study of radar obstacle detection. In: ICARCV, pp. 567–572 (2010)

    Google Scholar 

  9. Heidarsson, H., Sukhatme, G.: Obstacle detection and avoidance for an autonomous surface vehicle using a profiling sonar. In: ICRA, pp. 731–736 (2011)

    Google Scholar 

  10. Rankin, A., Matthies, L.: Daytime water detection based on color variation. In: International Conference on Intelligent Robots and Systems, pp. 215–221 (2010)

    Google Scholar 

  11. Elkins, L., Sellers, D., Reynolds, W.M.: The autonomous maritime navigation (amn) project: field tests, autonomous and cooperative behaviors, data fusion, sensors, and vehicles. J. Field Rob. 27, 790–818 (2010)

    Article  Google Scholar 

  12. Hong, T.H., Rasmussen, C., Chang, T., Shneier, M.: Fusing ladar and color image information for mobile robot feature detection and tracking. In: IAS, pp. 124–133 (2002)

    Google Scholar 

  13. Santana, P., Mendica, R., Barata, J.: Water detection with segmentation guided dynamic texture recognition. In: IEEE Robotics and Biomimetics (ROBIO), pp. 1836–1841 (2012)

    Google Scholar 

  14. Socek, D., Culibrk, D., Marques, O., Kalva, H., Furht, B.: A hybrid color-based foreground object detection method for automated marine surveillance. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 340–347. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Fefilatyev, S., Goldgof, D.: Detection and tracking of marine vehicles in video. In: Proceedings of the International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  16. Wang, H., Wei, Z., Wang, S., Ow, C., Ho, K., Feng, B.: A vision-based obstacle detection system for unmanned surface vehicle. In: International Conference on Robotics, Automation and Mechatronics, pp. 364–369 (2011)

    Google Scholar 

  17. Huntsberger, T., Aghazarian, H., Howard, A., Trotz, D.C.: Stereo visionbased navigation for autonomous surface vessels. JFR 28, 3–18 (2011)

    Google Scholar 

  18. Khan, S., Shah, M.: Object based segmentation of video using color, motion and spatial information. In: Computer Vision Pattern Recognition, vol. 2, pp. 746–751 (2001)

    Google Scholar 

  19. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  20. Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. 48, 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  21. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. Int. J. Comput. Vis. 70, 109–131 (2006)

    Article  Google Scholar 

  22. Wojek, C., Schiele, B.: A dynamic conditional random field model for joint labeling of object and scene classes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 733–747. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the International Conference on Machine Learning, pp. 282–289 (2001)

    Google Scholar 

  24. Kontschieder, P., Bulo, S., Bischof, H., Pelillo, M.: Structured class-labels in random forests for semantic image labelling. In: ICCV, pp. 2190–2197 (2011)

    Google Scholar 

  25. Alpert., S.Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR, pp. 1–8 (2012)

    Google Scholar 

  26. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV, pp. 10–17 (2003)

    Google Scholar 

  27. Li, Z., Wu, X.M., Chang, S.F.: Segmentation using superpixels: a bipartite graph partitioning approach. In: CVPR, pp. 789–796 (2012)

    Google Scholar 

  28. Diplaros, A., Vlassis, N., Gevers, T.: A spatially constrained generative model and an EM algorithm for image segmentation. IEEETNN 18, 798–808 (2007)

    Google Scholar 

  29. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)

    Article  Google Scholar 

  30. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. In: SIGGRAPH, vol. 23, pp. 309–314 (2004)

    Google Scholar 

  31. Bagon, S.: Matlab wrapper for graph cut (2006)

    Google Scholar 

  32. Felzenszwalb, P.F., Veksler, O.: Tiered scene labeling with dynamic programming. In: CVPR, pp. 3097–3104 (2010)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Slovenian research agency programs P2-0214, P2-0094, and projects J2-4284, J2-3607, J2-2221. We also thank HarphaSea d.o.o. for their hardware used to capture the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Kristan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kristan, M., Perš, J., Sulič, V., Kovačič, S. (2015). A Graphical Model for Rapid Obstacle Image-Map Estimation from Unmanned Surface Vehicles. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics