Skip to main content

Multi-scale Tetrahedral Fusion of a Similarity Reconstruction and Noisy Positional Measurements

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

Abstract

The fusion of a 3D reconstruction up to a similarity transformation from monocular videos and the metric positional measurements from GPS usually relies on the alignment of the two coordinate systems. When positional measurements provided by a low-cost GPS are corrupted by high-level noises, this approach becomes problematic. In this paper, we introduce a novel framework that uses similarity invariants to form a tetrahedral network of views for the fusion. Such a tetrahedral network decouples the alignment from the fusion to combat the high-level noises. Then, we update the similarity transformation each time a well-conditioned motion of cameras is successfully identified. Moreover, we develop a multi-scale sampling strategy to reduce the computational overload and to adapt the algorithm to different levels of noises. It is important to note that our optimization framework can be applied in both batch and incremental manners. Experiments on simulations and real datasets demonstrate the robustness and the efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, S., Mierle, K.: Ceres Solver: Tutorial & Reference. Google Inc

    Google Scholar 

  2. Dusha, D., Mejias, L.: Error analysis and attitude observability of a monocular gps/visual odometry integrated navigation filter. Int. J. Robot. Res. 31, 714–737 (2012)

    Article  Google Scholar 

  3. Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2815–2821. IEEE (2012)

    Google Scholar 

  4. Eudes, A., Lhuillier, M.: Error propagations for local bundle adjustment. In: CVPR, pp. 2411–2418 (2009)

    Google Scholar 

  5. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Rob. Res. (IJRR) 32, 1231–1237 (2013)

    Article  Google Scholar 

  6. Konolige, K., Agrawal, M.: FrameSLAM: from bundle adjustment to real-time visual mapping. IEEE Trans. Robt. 24, 1066–1077 (2008)

    Article  Google Scholar 

  7. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: \(g^{2}o\): A general framework for graph optimization. In: ICRA, pp. 3607–3613 (2011)

    Google Scholar 

  8. Lhuillier, M.: Incremental fusion of structure-from-motion and gps using constrained bundle adjustments. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2489–2495 (2012)

    Article  Google Scholar 

  9. Mei, C., Sibley, G., Cummins, M., Newman, P., Reid, I.: Rslam: a system for large-scale mapping in constant-time using stereo. Int. J. Comput. Vis. 94, 198–214 (2011)

    Article  Google Scholar 

  10. Michot, J., Bartoli, A., Gaspard, F.: Bi-objective bundle adjustment with application to multi-sensor slam. In: 3DPVT, p. 3025 (2010)

    Google Scholar 

  11. Morris, D.D.: Gauge Freedoms and uncertainty modeling for three-dimensional computer vision. Ph.D. thesis, Carnegie Mellon University (2001)

    Google Scholar 

  12. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–777 (2004)

    Article  Google Scholar 

  13. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)

    Google Scholar 

  14. Nützi, G., Weiss, S., Scaramuzza, D., Siegwart, R.: Fusion of imu and vision for absolute scale estimation in monocular slam. J. Intell. Robt. Syst. 61, 287–299 (2011)

    Article  Google Scholar 

  15. Rehder, J., Gupta, K., Nuske, S., Singh, S.: Global pose estimation with limited gps and long range visual odometry. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 627–633. IEEE (2012)

    Google Scholar 

  16. Smith, M., Baldwin, I., Churchill, W., Paul, R., Newman, P.: The new college vision and laser data set. Int. J. Robot. Res. 28, 595–599 (2009)

    Article  Google Scholar 

  17. Sibley, G., Sukhatme, G., Matthies, L.: The iterated sigma point kalman filter with applications to longrange stereo. In: Proceedings of Robotics: Science and Systems, pp. 263–270 (2006)

    Google Scholar 

  18. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Acknowledgement

Real-time videos Garden, House, Park are provided by DJI and CAMPUS is provided by Key Laboratory of Machine Perception (Ministry of Education) in Peking University. This work is supported by RGC-GRF 618711, RGC/NSFC N_HKUST607/11, ITC-PSKL12EG02, and National Basic Research Program of China (2012CB316300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, R., Fang, T., Zhu, S., Quan, L. (2015). Multi-scale Tetrahedral Fusion of a Similarity Reconstruction and Noisy Positional Measurements. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics